/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMM interface */ #pragma once #include #include #include #include "../../common/cutlass_unit_test.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/reference/host/gemm.h" #include "cutlass/util/reference/host/gemm_complex.h" #include "testbed_utils.h" namespace test { namespace gemm { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// template struct GemmWithBroadcastReferenceOp { using OutputOp = typename Gemm::GemmKernel::Epilogue::OutputOp; using ElementCompute = typename OutputOp::ElementCompute; using ElementZ = typename OutputOp::ElementZ; using ElementT = typename OutputOp::ElementT; typename OutputOp::BinaryOp binary_op; typename OutputOp::ElementwiseOp elementwise_op; GemmWithBroadcastReferenceOp() { } void operator()(ElementZ &Z, ElementT &T, ElementCompute gemm, ElementCompute bias) { ElementCompute t_full = binary_op(gemm, bias); T = ElementT(t_full); ElementCompute z_full = elementwise_op(t_full); Z = ElementZ(z_full); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// // Fused testbed // // Y = GEMM(AB, C) // // T[i, j] = BinaryOp(Y[i, j], Broadcast[i]) // // Z[i, j] = Elementwise(T[i, j]) // template < typename Gemm, typename ReferenceOp = GemmWithBroadcastReferenceOp > struct TestbedGemmWithBroadcast { using ElementA = typename Gemm::ElementA; using ElementB = typename Gemm::ElementB; using OutputOp = typename Gemm::GemmKernel::Epilogue::OutputOp; using ElementC = typename Gemm::ElementC; using ElementAccumulator = typename Gemm::ElementAccumulator; using ElementCompute = typename OutputOp::ElementCompute; using ElementVector = typename OutputOp::ElementVector; using ElementZ = typename OutputOp::ElementZ; using ElementT = typename OutputOp::ElementT; /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_C; uint64_t seed; cutlass::HostTensor tensor_A; // Input A cutlass::HostTensor tensor_B; // Input B cutlass::HostTensor tensor_C; // Input C cutlass::HostTensor tensor_Broadcast; // Input Broadcast cutlass::HostTensor tensor_Z; cutlass::HostTensor tensor_T; cutlass::HostTensor tensor_C_ref; cutlass::HostTensor tensor_Y_ref; cutlass::HostTensor tensor_Z_ref; cutlass::HostTensor tensor_T_ref; // // Methods // TestbedGemmWithBroadcast( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } /// Helper to initialize a tensor view template bool initialize_tensor( cutlass::TensorView view, cutlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits::value; int bits_output = cutlass::sizeof_bits::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, 0); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential( view.data(), view.capacity()); } else { EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Initializes data structures void initialize(cutlass::gemm::GemmCoord problem_size) { // // Allocate the GEMM workspace // tensor_A.resize(problem_size.mk()); tensor_B.resize(problem_size.kn()); tensor_C.resize(problem_size.mn()); tensor_Z.resize(problem_size.mn()); tensor_T.resize(problem_size.mn()); tensor_Broadcast.resize({ problem_size.m(), 1 }); tensor_C_ref.resize(problem_size.mn()); tensor_Y_ref.resize(problem_size.mn()); tensor_Z_ref.resize(problem_size.mn()); tensor_T_ref.resize(problem_size.mn()); EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019)); EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2018)); EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 2017)); EXPECT_TRUE(initialize_tensor(tensor_Broadcast.host_view(), init_C, seed + 2020)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. tensor_A.host_view().at({0, 0}) = typename Gemm::ElementA(1); tensor_B.host_view().at({0, 0}) = typename Gemm::ElementB(1); tensor_C.host_view().at({0, 0}) = typename Gemm::ElementC(1); for (int m = 0; m < tensor_C_ref.extent().row(); ++m) { for (int n = 0; n < tensor_C_ref.extent().column(); ++n) { tensor_C_ref.at({m, n}) = ElementAccumulator(tensor_C.at({m, n})); } } tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_Broadcast.sync_device(); tensor_Z.sync_device(); tensor_T.sync_device(); } /// Compares computed reference with device reference and outputs to a file if incorrect bool compare_reference( cutlass::gemm::GemmCoord problem_size, ElementAccumulator alpha, ElementAccumulator beta) { tensor_Z.sync_host(); tensor_T.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_Z.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_T.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_Z_ref.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_T_ref.host_view()), 0); bool passed = true; float norm_diff = 0; if (OutputOp::kStoreZ) { norm_diff = cutlass::reference::host::TensorNormDiff(tensor_Z_ref.host_view(), tensor_Z.host_view(), float()); passed = (norm_diff <= 0.1f); EXPECT_LT(norm_diff, 0.1f) << " tensor_Z is incorrect"; } if (OutputOp::kStoreT) { norm_diff = cutlass::reference::host::TensorNormDiff(tensor_T_ref.host_view(), tensor_T.host_view(), float()); passed = (passed && (norm_diff <= 0.1f)); EXPECT_LT(norm_diff, 0.1f) << " tensor_T is incorrect"; } if (!passed) { /* std::stringstream fname; fname << "error_Gemm_device_" << problem_size.m() << "x" << problem_size.n() << "x" << problem_size.k() << "_" << Gemm::ThreadblockShape::kM << "x" << Gemm::ThreadblockShape::kN << "x" << Gemm::ThreadblockShape::kK << "_" << Gemm::WarpShape::kM << "x" << Gemm::WarpShape::kN << "x" << Gemm::WarpShape::kK << ".txt"; std::ofstream file(fname.str()); */ std::ofstream file("errors_testbed_gemm_with_broadcast.txt"); file << "problem: " << problem_size << ", alpha: " << alpha << ", beta: " << beta << "\n\n"; file << "A =\n" << tensor_A.host_view() << "\nB =\n" << tensor_B.host_view() << "\nC =\n" << tensor_C.host_view() << "\nZ =\n" << tensor_Z.host_view() << "\nT =\n" << tensor_T.host_view() << "\n\n" << "\nY_ref =\n" << tensor_Y_ref.host_view() << "\nZ_ref =\n" << tensor_Z_ref.host_view() << "\nT_ref =\n" << tensor_T_ref.host_view(); } return passed; } /// Verifies the result is a GEMM bool verify( cutlass::gemm::GemmCoord problem_size, ElementAccumulator alpha, ElementAccumulator beta) { // // Verify // cutlass::reference::host::GemmComplex< typename Gemm::ElementA, typename Gemm::LayoutA, typename Gemm::ElementB, typename Gemm::LayoutB, ElementAccumulator, typename Gemm::LayoutC, ElementAccumulator, ElementAccumulator >( problem_size, alpha, tensor_A.host_ref(), Gemm::kTransformA, tensor_B.host_ref(), Gemm::kTransformB, beta, tensor_C_ref.host_ref(), tensor_Y_ref.host_ref(), ElementAccumulator(0) ); using ElementC = typename Gemm::ElementC; ReferenceOp reference_op; // compute tensor Z and tensor T for (int m = 0; m < problem_size.m(); ++m) { for (int n = 0; n < problem_size.n(); ++n) { ElementZ z; ElementT t; reference_op(z, t, tensor_Y_ref.at({m, n}), tensor_Broadcast.at({m, 0})); tensor_Z_ref.at({m, n}) = z; tensor_T_ref.at({m, n}) = t; } } return compare_reference(problem_size, alpha, beta); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { // // Determine SMEM requirements and waive if not satisfied // int smem_size = int(sizeof(typename Gemm::GemmKernel::SharedStorage)); cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.sharedMemPerBlockOptin < smem_size) { return false; } return true; } /// Executes one test bool run( cutlass::gemm::GemmUniversalMode mode, cutlass::gemm::GemmCoord problem_size, int batch_count = 1, ElementAccumulator alpha = ElementAccumulator(1), ElementAccumulator beta = ElementAccumulator(0)) { // Waive test if insufficient CUDA device if (!sufficient()) { if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) { std::cerr << "Test waived due to insufficient CUDA device." << std::endl; } return true; } this->initialize(problem_size); // // Initialize the GEMM operator // typename Gemm::Arguments arguments{ mode, problem_size, batch_count, {alpha, beta}, tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data(), tensor_Z.device_data(), tensor_Broadcast.device_data(), tensor_T.device_data(), problem_size.m() * problem_size.k(), problem_size.n() * problem_size.k(), problem_size.m() * problem_size.n(), problem_size.m() * problem_size.n(), problem_size.m(), problem_size.m() * problem_size.n(), tensor_A.layout().stride(0), tensor_B.layout().stride(0), tensor_C.layout().stride(0), tensor_Z.layout().stride(0), 0, // This must be zero tensor_T.layout().stride(0), }; Gemm gemm_op; size_t workspace_size = Gemm::get_workspace_size(arguments); cutlass::device_memory::allocation workspace(workspace_size); cutlass::Status status = gemm_op.initialize(arguments, workspace.get()); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Run the GEMM // status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Verify // bool passed = true; passed = this->verify(problem_size, alpha, beta); if (!passed) { std::cout << "Failed with batch_count/split_k_slices = " << batch_count << std::endl; } // // Profile // #if 0 // profiling disabled for now. int const kWorkspaces = 100; cutlass::DeviceAllocation profiling_tensor_A(tensor_A.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_B(tensor_B.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_C(tensor_C.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_Broadcast(tensor_Broadcast.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_Z(tensor_Z.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_T(tensor_T.capacity() * kWorkspaces); cudaEvent_t events[2]; for (auto & event : events) { cudaError_t result = cudaEventCreate(&event); if (result != cudaSuccess) { EXPECT_EQ(result, cudaSuccess) << " cudaEventCreate() failed with error " << cudaGetErrorString(result); return false; break; } } int const kWarmupIterations = 5; int const kProfilingIterations = 100; for (int i = 0; i < kWarmupIterations; ++i) { status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); } cudaError_t result = cudaEventRecord(events[0]); EXPECT_EQ(result, cudaSuccess); for (int i = 0; i < kProfilingIterations; ++i) { typename Gemm::Arguments arguments{ mode, problem_size, batch_count, {alpha, beta}, profiling_tensor_A.get() + tensor_A.capacity() * (i % kWorkspaces), profiling_tensor_B.get() + tensor_B.capacity() * (i % kWorkspaces), profiling_tensor_C.get() + tensor_C.capacity() * (i % kWorkspaces), profiling_tensor_Z.get() + tensor_Z.capacity() * (i % kWorkspaces), profiling_tensor_Broadcast.get() + tensor_Broadcast.capacity() * (i % kWorkspaces), profiling_tensor_T.get() + tensor_T.capacity() * (i % kWorkspaces), problem_size.m() * problem_size.k(), problem_size.n() * problem_size.k(), problem_size.m() * problem_size.n(), problem_size.m() * problem_size.n(), problem_size.m(), problem_size.m() * problem_size.n(), tensor_A.layout().stride(0), tensor_B.layout().stride(0), tensor_C.layout().stride(0), tensor_Z.layout().stride(0), 0, // This must be zero tensor_T.layout().stride(0), }; gemm_op.initialize(arguments, workspace.get()); status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); } result = cudaEventRecord(events[1]); EXPECT_EQ(result, cudaSuccess); result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess); float elapsed_time = 0; result = cudaEventElapsedTime(&elapsed_time, events[0], events[1]); EXPECT_EQ(result, cudaSuccess); double average_time = double(elapsed_time) / double(kProfilingIterations); std::cout << problem_size << ": " << average_time << " ms" << std::endl; for (auto & event : events) { cudaEventDestroy(event); } #endif return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Gemm, typename ReferenceOp = GemmWithBroadcastReferenceOp > bool TestGemmWithBroadcast( cutlass::gemm::GemmCoord const & problem_size, cutlass::gemm::GemmUniversalMode mode, int batch_count, double alpha = 1.0, double beta = 2.0) { bool passed = true; TestbedGemmWithBroadcast testbed; using ElementAccumulator = typename Gemm::ElementAccumulator; passed = testbed.run( mode, problem_size, batch_count, cutlass::from_real(alpha), cutlass::from_real(beta) ); return passed; } ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Gemm, typename ReferenceOp = GemmWithBroadcastReferenceOp > bool TestAllGemmWithBroadcast() { int M_problems[] = {8, 136, 264, 520}; int N_problems[] = {8, 136, 264, 520}; int K_problems[] = {8, 136, 264, 520}; double alpha_problems[] = {1.25, 2.25}; double beta_problems[] = {0, 1, 2.0}; bool passed = true; for (int M : M_problems) { for (int N : N_problems) { for (int K : K_problems) { for (double alpha : alpha_problems) { for (double beta : beta_problems) { TestbedGemmWithBroadcast testbed; using ElementAccumulator = typename Gemm::ElementAccumulator; passed = testbed.run( cutlass::gemm::GemmUniversalMode::kGemm, {M, N, K}, 1, cutlass::from_real(alpha), cutlass::from_real(beta) ); EXPECT_TRUE(passed) << "M: " << M << ", N: " << N << ", K: " << K << ", alpha: " << alpha << ", beta: " << beta; if (!passed) { return passed; } } } } } } return passed; } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace device } // namespace gemm } // namespace test /////////////////////////////////////////////////////////////////////////////////////////////////