################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for Conv2d operands on SM80 """ from conv2d_test_utils import * import cutlass import logging cutlass.set_log_level(logging.WARNING) cc = 80 @unittest.skipIf(device_cc() != cc, 'Device compute capability is invalid for SM80 tests.') class Conv2dSm80(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass conv_problems = get_conv_problems() # Tests for optimized & analytic for conv_kind in ["fprop", "wgrad", "dgrad"]: # F16, simt add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="simt", threadblock_shape=[128, 128, 8], warp_count=[4, 2, 1], stages=2, instruction_shape=[1, 1, 1]) # F16, tensor op add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16]) # F16, tensor op, analytic iterator add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], iterator_algorithm="analytic") # F16, tensor op, f32 output add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16]) # F16, tensor op, different tile description add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 64, 32], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8]) # F32, simt add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, opclass="simt", threadblock_shape=[128, 128, 8], warp_count=[4, 2, 1], stages=4, instruction_shape=[1, 1, 1]) # Tf32, tensorop add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, opclass="tensor_op", threadblock_shape=[128, 128, 16], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8] ) # Split-K add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode="serial", split_k_slices=2) add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode="parallel", split_k_slices=5) # Swizzling functor add_test( Conv2dSm80, cc, conv_kind, conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 64, 32], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 8], swizzle=4) # Tests for few channels and fixed channels # F16, tensor op, few channels for c, tb, stage, inst in zip([2, 1], [[128, 128, 64], [128, 128, 32]], [3, 2], [[16, 8, 16], [16, 8, 8]]): add_test( Conv2dSm80, cc, "fprop", conv2d_few_channel_problemsizes(c), cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=tb, warp_count=[2, 2, 1], stages=stage, instruction_shape=inst, iterator_algorithm="few_channels" ) # F16, tensor op, fixed channels for c in [8, 4, 2]: add_test( Conv2dSm80, cc, "fprop", conv2d_few_channel_problemsizes(c), cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], iterator_algorithm="fixed_channels" ) # Test activations for activation in ["relu", "leaky_relu"]: for split_k_mode, split_k_slices in zip(["parallel", "serial", "parallel"], [1, 7, 5]): add_test( Conv2dSm80, cc, "fprop", conv_problems, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f16, opclass="tensor_op", threadblock_shape=[128, 128, 64], warp_count=[2, 2, 1], stages=3, instruction_shape=[16, 8, 16], split_k_mode=split_k_mode, split_k_slices=split_k_slices, activation=activation) if __name__ == '__main__': unittest.main()