/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* \file \brief Defines operations for all Rank K operation kinds (Syrk, Herk) in CUTLASS Library. */ #pragma once #include "cutlass/cutlass.h" #include "cutlass/gemm/device/rank_k.h" #include "cutlass/gemm/kernel/default_rank_k_universal.h" #include "cutlass/library/library.h" #include "library_internal.h" /////////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// template class RankKOperationBase : public Operation { public: using Operator = Operator_; using ElementA = typename Operator::ElementA; using LayoutA = typename Operator::LayoutA; using ElementB = typename Operator::ElementA; using LayoutB = typename Operator::LayoutA; using ElementC = typename Operator::ElementC; using LayoutC = typename Operator::LayoutC; using ElementAccumulator = typename Operator::ElementAccumulator; using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute; static BlasMode const kBlasMode = Operator::kBlasMode; static int const kUpdateRank = Operator::kUpdateRank; static FillMode const kFillModeC = Operator::kFillModeC; using OperatorArguments = typename Operator::Arguments; protected: /// RankKDescription description_; public: /// Constructor RankKOperationBase(char const *name = "unknown_rank_k") { description_.name = name; description_.provider = Provider::kCUTLASS; description_.rank_k_kind = RankKKind::kUniversal; description_.fill_mode = kFillModeC; description_.blas_mode = kBlasMode; description_.num_ranks = kUpdateRank; description_.kind = OperationKind::kRankK; description_.tile_description.threadblock_shape = make_Coord( Operator::ThreadblockShape::kM, Operator::ThreadblockShape::kN, Operator::ThreadblockShape::kK); description_.tile_description.threadblock_stages = Operator::kStages; description_.tile_description.warp_count = make_Coord( Operator::RankKkernel::WarpCount::kM, Operator::RankKkernel::WarpCount::kN, Operator::RankKkernel::WarpCount::kK); description_.tile_description.math_instruction.instruction_shape = make_Coord( Operator::InstructionShape::kM, Operator::InstructionShape::kN, Operator::InstructionShape::kK); description_.tile_description.math_instruction.element_accumulator = NumericTypeMap::kId; description_.tile_description.math_instruction.opcode_class = OpcodeClassMap::kId; description_.tile_description.math_instruction.math_operation = MathOperationMap::kId; description_.tile_description.minimum_compute_capability = ArchMap::kMin; description_.tile_description.maximum_compute_capability = ArchMap::kMax; description_.A = make_TensorDescription(Operator::kAlignmentA); description_.B = make_TensorDescription(Operator::kAlignmentA); description_.C = make_TensorDescription(Operator::kAlignmentC); description_.element_epilogue = NumericTypeMap::kId; description_.split_k_mode = SplitKMode::kNone; description_.transform_A = ComplexTransformMap::kId; description_.transform_B = ComplexTransformMap::kId; } /// Returns the description of the SYRK operation virtual OperationDescription const & description() const { return description_; } }; /////////////////////////////////////////////////////////////////////////////////////////////////// template class RankKOperation : public RankKOperationBase { public: using Operator = Operator_; using ElementA = typename Operator::ElementA; using LayoutA = typename Operator::LayoutA; using ElementB = typename Operator::ElementA; using LayoutB = typename Operator::LayoutA; using ElementC = typename Operator::ElementC; using LayoutC = typename Operator::LayoutC; using ElementAccumulator = typename Operator::ElementAccumulator; using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute; static BlasMode const kBlasMode = Operator::kBlasMode; static int const kUpdateRank = Operator::kUpdateRank; static FillMode const kFillModeC = Operator::kFillModeC; using OperatorArguments = typename Operator::Arguments; public: /// Constructor RankKOperation(char const *name = "unknown_rank_k"): RankKOperationBase(name) { this->description_.rank_k_kind = RankKKind::kUniversal; } protected: /// Constructs the arguments structure given the configuration and arguments static Status construct_arguments_( OperatorArguments &operator_args, RankKConfiguration const *configuration) { //operator_args.mode = configuration->mode; operator_args.problem_size = configuration->problem_size; operator_args.batch_count = configuration->batch_count; operator_args.lda = int(configuration->lda); operator_args.ldb = int(configuration->lda); operator_args.ldc = int(configuration->ldc); operator_args.ldd = int(configuration->ldd); return Status::kSuccess; } /// Constructs the arguments structure given the configuration and arguments static Status update_arguments_( OperatorArguments &operator_args, RankKArguments const *arguments) { if (arguments->pointer_mode == ScalarPointerMode::kHost) { typename Operator::EpilogueOutputOp::Params params( *static_cast(arguments->alpha), *static_cast(arguments->beta) ); operator_args.epilogue = params; } else if (arguments->pointer_mode == ScalarPointerMode::kDevice){ typename Operator::EpilogueOutputOp::Params params( static_cast(arguments->alpha), static_cast(arguments->beta) ); operator_args.epilogue = params; } else { return Status::kErrorInvalidProblem; } // update arguments operator_args.ptr_A = arguments->A; operator_args.ptr_C = arguments->C; operator_args.ptr_D = arguments->D; operator_args.batch_stride_A = arguments->batch_stride_A; operator_args.batch_stride_C = arguments->batch_stride_C; operator_args.batch_stride_D = arguments->batch_stride_D; return Status::kSuccess; } public: /// Returns success if the operation can proceed virtual Status can_implement( void const *configuration_ptr, void const *arguments_ptr) const { RankKConfiguration const *configuration = static_cast(configuration_ptr); RankKArguments const *arguments = static_cast(arguments_ptr); OperatorArguments args; Status status = construct_arguments_(args, configuration); if (status != Status::kSuccess) { return status; } status = update_arguments_(args, arguments); if (status != Status::kSuccess) { return status; } return Operator::can_implement(args); } /// Gets the host-side workspace virtual uint64_t get_host_workspace_size( void const *configuration) const { return sizeof(Operator); } /// Gets the device-side workspace virtual uint64_t get_device_workspace_size( void const *configuration_ptr, void const *arguments_ptr = nullptr) const { OperatorArguments args; Status status = construct_arguments_( args, static_cast(configuration_ptr)); if (status != Status::kSuccess) { return 0; } uint64_t size = Operator::get_workspace_size(args); return size; } /// Initializes the workspace virtual Status initialize( void const *configuration_ptr, void *host_workspace, void *device_workspace, cudaStream_t stream = nullptr) const { OperatorArguments args; Status status = construct_arguments_( args, static_cast(configuration_ptr)); if (status != Status::kSuccess) { return status; } Operator *op = new (host_workspace) Operator; status = op->initialize(args, device_workspace, stream); return status; } /// Runs the kernel virtual Status run( void const *arguments_ptr, void *host_workspace, void *device_workspace = nullptr, cudaStream_t stream = nullptr) const { OperatorArguments args; Status status = update_arguments_( args, static_cast(arguments_ptr)); if (status != Status::kSuccess) { return status; } Operator *op = static_cast(host_workspace); status = op->update(args, device_workspace); if (status != Status::kSuccess) { return status; } status = op->run(stream); return status; } }; /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass ///////////////////////////////////////////////////////////////////////////////////////////////////