################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# from pycutlass import * import pycutlass from pycutlass.epilogue import LinearCombination from pycutlass.test.conv2d_testbed import Conv2dLauncher if __name__ == "__main__": pycutlass.get_memory_pool(2**33, 2**33) pycutlass.compiler.nvcc() math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass.float16, element_b=cutlass.float16, element_accumulator=cutlass.float32, opcode_class=cutlass.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) A = TensorDescription( element=math_inst.element_a, layout=cutlass.TensorNHWC, alignment=8) B = TensorDescription( element=math_inst.element_b, layout=cutlass.TensorNHWC, alignment=8) C = TensorDescription( element=cutlass.float32, layout=cutlass.TensorNHWC, alignment=8) tile_description = TileDescription( threadblock_shape=[128, 128, 64], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) epilogue_functor = LinearCombination(cutlass.float32, 4, cutlass.float32, cutlass.float32) operation = Conv2dOperation( conv_kind=cutlass.conv.Operator.fprop, iterator_algorithm=cutlass.conv.IteratorAlgorithm.optimized, arch=80, tile_description=tile_description, A=A, B=B, C=C, element_epilogue=cutlass.float32, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor, swizzling_functor=cutlass.IdentitySwizzle1 ) profiler = Conv2dLauncher(operation, verification=False, profiling=True) python_runtime = profiler.run( problem_size = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(32, 224, 224, 128), cutlass.Tensor4DCoord(128, 3, 3, 128), cutlass.Tensor4DCoord(1, 1, 1, 1), cutlass.MatrixCoord(1, 1), cutlass.MatrixCoord(1, 1), cutlass.conv.Mode.cross_correlation, 1, 1 ), split_k_mode=cutlass.conv.SplitKMode.Serial ) cpp_runtime = profiler.run_cutlass_profiler( problem_size = cutlass.conv.Conv2dProblemSize( cutlass.Tensor4DCoord(32, 224, 224, 128), cutlass.Tensor4DCoord(128, 3, 3, 128), cutlass.Tensor4DCoord(1, 1, 1, 1), cutlass.MatrixCoord(1, 1), cutlass.MatrixCoord(1, 1), cutlass.conv.Mode.cross_correlation, 1, 1 ), split_k_mode=cutlass.conv.SplitKMode.Serial ) print(cpp_runtime / python_runtime)