################################################################################################# # # Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import pycutlass from pycutlass import * from pycutlass.test import * import unittest from pycutlass.test.gemm_grouped_testbed import TestbedGrouped from pycutlass.utils.device import device_cc @unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.") class GemmGroupedSm80(unittest.TestCase): def test_SM80_Device_GemmGrouped_f16n_f16t_f32n_tensor_op_f32_128x128x32_64x64x32(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass.float16, element_b=cutlass.float16, element_accumulator=cutlass.float32, opcode_class=cutlass.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass.float16, layout=cutlass.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass.float16, layout=cutlass.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass.float32, layout=cutlass.ColumnMajor, alignment=4 ) element_epilogue = cutlass.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass.BatchedIdentitySwizzle for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]: operation = GemmOperationGrouped( 80, tile_description, A, B, C, epilogue_functor, swizzling_functor, precompute_mode=precompute_mode ) testbed = TestbedGrouped(operation=operation) self.assertTrue(testbed.run(24)) def test_SM80_Device_GemmGrouped_f64t_f64t_f64n_tensor_op_f64_64x64x16_32x32x16(self): math_inst = MathInstruction( instruction_shape=[8, 8, 4], element_a=cutlass.float64, element_b=cutlass.float64, element_accumulator=cutlass.float64, opcode_class=cutlass.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[64, 64, 16], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass.float64, layout=cutlass.RowMajor, alignment=1 ) B = TensorDescription( element=cutlass.float64, layout=cutlass.RowMajor, alignment=1 ) C = TensorDescription( element=cutlass.float64, layout=cutlass.ColumnMajor, alignment=1 ) element_epilogue = cutlass.float64 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass.BatchedIdentitySwizzle for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]: operation = GemmOperationGrouped( 80, tile_description, A, B, C, epilogue_functor, swizzling_functor, precompute_mode=precompute_mode ) testbed = TestbedGrouped(operation=operation) self.assertTrue(testbed.run(24)) def test_SM80_Device_GemmGrouped_f32t_f32t_f32t_simt_f32_128x64x8_64x32x1(self): math_inst = MathInstruction( instruction_shape=[1, 1, 1], element_a=cutlass.float32, element_b=cutlass.float32, element_accumulator=cutlass.float32, opcode_class=cutlass.OpClass.Simt, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 64, 8], stages=4, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass.float32, layout=cutlass.RowMajor, alignment=1 ) B = TensorDescription( element=cutlass.float32, layout=cutlass.RowMajor, alignment=1 ) C = TensorDescription( element=cutlass.float32, layout=cutlass.RowMajor, alignment=1 ) element_epilogue = cutlass.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass.BatchedIdentitySwizzle for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]: operation = GemmOperationGrouped( 80, tile_description, A, B, C, epilogue_functor, swizzling_functor, precompute_mode=precompute_mode ) testbed = TestbedGrouped(operation=operation) self.assertTrue(testbed.run(27)) def test_SM80_Device_GemmGrouped_f16n_f16t_f32n_tensor_op_f32_128x128x32_64x64x32_cache(self): math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass.float16, element_b=cutlass.float16, element_accumulator=cutlass.float32, opcode_class=cutlass.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[128, 128, 32], stages=3, warp_count=[2, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass.float16, layout=cutlass.ColumnMajor, alignment=8 ) B = TensorDescription( element=cutlass.float16, layout=cutlass.ColumnMajor, alignment=8 ) C = TensorDescription( element=cutlass.float32, layout=cutlass.ColumnMajor, alignment=4 ) element_epilogue = cutlass.float32 epilogue_functor = LinearCombination( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = cutlass.BatchedIdentitySwizzle for precompute_mode in [SchedulerMode.Device, SchedulerMode.Host]: operation = GemmOperationGrouped( 80, tile_description, A, B, C, epilogue_functor, swizzling_functor, precompute_mode=precompute_mode ) testbed = TestbedGrouped(operation=operation) self.assertTrue(testbed.run(5)) if __name__ == '__main__': pycutlass.get_memory_pool(2**30, 2**30) unittest.main()