################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with S8 operands on SM80 """ from functools import partial import cutlass from cutlass.utils.datatypes import binding_opclass, binding_type from cutlass.backend.test.gemm_testbed import test_all_gemm import unittest from cutlass.backend.test.utils import LayoutCombination, get_name from cutlass.backend.utils.device import device_cc cc = 80 # Partial specialziation for naming tests bound_type = binding_type(cutlass.DataType.s8) name_fn = partial(get_name, element_a=bound_type, element_b=bound_type, arch=cc) def add_test(cls, layouts, alignments, element_output, element_accumulator, threadblock_shape, warp_count, stages, opclass, swizzle=None): """ Create a test-running function with the given specification and set it as a method of `cls`. :param cls: class to which the generated method will be added :type cls: type :param layouts: layouts of A, B, and C operands :type layouts: list or tuple :param alignments: alingments of A, B, and C operands :type alignments: list or tuple :param element_output: data type of the output element :type element_output: cutlass.DataType :param element_accumulator: data type used in accumulation :type element_accumulator: cutlass.DataType :param threadblock_shape: dimensions of threadblock tiles :type threadblock_shape: list or tuple :param warp_count: warps to be launched per threadblock dimension :type warp_count: list or tuple :param stages: number of pipeline stages to use in the kernel :type stages: int :param opclass: class of operation being performed (e.g., SIMT, Tensor Core) :type opclass: cutlass.OpClass :param swizzle: threadblock swizzling functor """ cluster_shape = [1, 1, 1] def run(self): """ Dynamically-generated function that constructs a GEMM operation and verifies it against multiple test cases. """ element_A = cutlass.DataType.s8 element_B = cutlass.DataType.s8 layout_A, layout_B, layout_C = layouts alignment_A, alignment_B, alignment_C = alignments plan = cutlass.op.Gemm(element_A=element_A, element_B=element_B, element_C=element_output, element_D=element_output, layout_A=layout_A, layout_B=layout_B, layout_C=layout_C, element_accumulator=element_accumulator, kernel_cc=cc) plan.opclass = opclass if swizzle is not None: plan.swizzling_functor = swizzle td = plan.tile_descriptions()[0] td.threadblock_shape = threadblock_shape td.stages = stages td.warp_count = warp_count td.cluster_shape = cluster_shape op = plan.construct(tile_description=td, alignment_A=alignment_A, alignment_B=alignment_B, alignment_C=alignment_C) self.assertTrue(test_all_gemm(op, 'universal')) element_epilogue = element_accumulator name = name_fn(layouts, alignments, binding_type(element_output), binding_type(element_accumulator), binding_type(element_epilogue), cluster_shape, threadblock_shape, stages, opclass=binding_opclass(opclass)) setattr(cls, name, run) return run @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmS8Sm80(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmS8Sm80StreamK(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass # Tests using TensorOp add_test_tensorop = partial(add_test, opclass=cutlass.OpcodeClass.TensorOp) add_test_tensorop(GemmS8Sm80, LayoutCombination.TNN, [16, 16, 16], cutlass.DataType.s8, cutlass.DataType.s32, [256, 128, 64], [4, 2, 1], 3) add_test_tensorop(GemmS8Sm80, LayoutCombination.TNT, [16, 16, 16], cutlass.DataType.s8, cutlass.DataType.s32, [128, 256, 64], [2, 4, 1], 3) add_test_tensorop(GemmS8Sm80, LayoutCombination.TNN, [16, 16, 4], cutlass.DataType.s32, cutlass.DataType.s32, [64, 64, 64], [1, 1, 1], 4) # Tests using SIMT add_test_simt = partial(add_test, opclass=cutlass.OpcodeClass.Simt) add_test_simt(GemmS8Sm80, LayoutCombination.NNN, [1, 1, 1], cutlass.DataType.s8, cutlass.DataType.s32, [128, 128, 8], [2, 2, 1], 2) add_test_simt(GemmS8Sm80, LayoutCombination.TNN, [1, 1, 1], cutlass.DataType.s8, cutlass.DataType.s32, [64, 128, 8], [1, 2, 1], 2) add_test_simt(GemmS8Sm80, LayoutCombination.NTN, [1, 1, 1], cutlass.DataType.s8, cutlass.DataType.s32, [128, 64, 8], [2, 1, 1], 2) add_test_simt(GemmS8Sm80, LayoutCombination.TTN, [1, 1, 1], cutlass.DataType.s32, cutlass.DataType.s32, [64, 64, 8], [1, 1, 1], 2) add_test_simt(GemmS8Sm80, LayoutCombination.NNT, [1, 1, 1], cutlass.DataType.s32, cutlass.DataType.s32, [128, 128, 8], [2, 2, 1], 2) # Stream K tests add_test_streamk = partial(add_test, opclass=cutlass.OpcodeClass.TensorOp, swizzle=cutlass.swizzle.ThreadblockSwizzleStreamK) add_test_streamk(GemmS8Sm80StreamK, LayoutCombination.TNT, [16, 16, 16], cutlass.DataType.s8, cutlass.DataType.s32, [128, 256, 64], [2, 4, 1], 3) if __name__ == '__main__': unittest.main()