################################################################################ # # Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import sys print("This example is deprecated. Please see examples/python for examples of using " "the CUTLASS Python interface.") sys.exit(0) import numpy as np import cutlass.backend as pycutlass from cutlass.backend import * from cutlass.backend.utils.device import device_cc from cutlass.backend.conv2d_operation import * from cutlass.backend.utils.reference_model import Conv2dReferenceModule import torch.nn.functional as F import argparse # parse the arguments parser = argparse.ArgumentParser(description="Launch CUTLASS convolution 2d kernels from Python") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="Simt", type=str, choices=["Simt", 'TensorOp'], help='This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM') # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[ 4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorNC32HW32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignement of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorC32RSK32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="TensorNHWC", type=str, choices=[ "TensorNHWC", "TensorNC32HW32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Data type of computation in the epilogue') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle", "StridedDgradIdentitySwizzle1", "StridedDgradIdentitySwizzle4", "StridedDgradHorizontalSwizzle"], help="This option describes how thread blocks are scheduled on GPU") # conv related parser.add_argument("-co", "--conv_kind", default="fprop", type=str, choices=['fprop', 'dgrad', 'wgrad'], help="The type of convolution: forward propagation (fprop), \ gradient of activation (dgrad), gradient of weight (wgrad)") parser.add_argument("-st", "--stride_support", default="Strided", type=str, choices=["Strided", "Unity"], ) parser.add_argument("-ia", "--iterator_algorithm", default="analytic", type=str, choices=["analytic", "optimized", "fixed_channels", "few_channels"], help="This option describes iterator algorithm") # arguments parser.add_argument("-sm", "--split_k_mode", default="Serial", type=str, choices=["Serial", "Parallel"], help="Split K Mode. Serial is used for non-splitK or serial-splitK.\ Parallel is used for parallel splitK.") parser.add_argument('-k', '--split_k_slices', default=1, type=int, help="Number of split-k partitions. (default 1)") parser.add_argument("-nhwc", "--nhwc", nargs=4, type=int, help="input size (NHWC)") parser.add_argument("-krsc", "--krsc", nargs=4, type=int, help="filter size (KRSC)") parser.add_argument("-pad", "--pad", nargs=4, type=int, help="padding (pad_h, _, pad_w, _)") parser.add_argument("-stride", "--stride", nargs=2, type=int, help="stride (stride_h, stride_w)") parser.add_argument("-dilation", "--dilation", nargs=2, type=int, help="dilation (dilation_h, dilation_w)") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="alpha") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="beta") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) np.random.seed(0) element_a = getattr(cutlass_bindings, args.element_a) element_b = getattr(cutlass_bindings, args.element_b) element_c = getattr(cutlass_bindings, args.element_c) element_acc = getattr(cutlass_bindings, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass_bindings.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass_bindings, args.layout_a) layout_b = getattr(cutlass_bindings, args.layout_b) layout_c = getattr(cutlass_bindings, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass_bindings, args.element_epilogue) if (args.activation_function == "identity" or (args.split_k_mode == "Parallel" and args.split_k_slices > 1)): # epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) iterator_algorithm = getattr(cutlass_bindings.conv.IteratorAlgorithm, args.iterator_algorithm) swizzling_functor = getattr(cutlass_bindings, args.swizzling_functor) stride_support = getattr(StrideSupport, args.stride_support) conv_kind = getattr(cutlass_bindings.conv.Operator, args.conv_kind) operation = Conv2dOperation( conv_kind=conv_kind, iterator_algorithm=iterator_algorithm, arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, stride_support=stride_support, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation,] if args.split_k_mode == "Parallel" and args.split_k_slices > 1: if (args.activation_function == "identity"): epilogue_functor_reduction = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor_reduction = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) reduction_operation = ReductionOperation( shape=cutlass_bindings.MatrixCoord(4, 32 * C.alignment), C=C, element_accumulator=element_acc, element_compute=element_epilogue, epilogue_functor=epilogue_functor_reduction, count=C.alignment ) operations.append(reduction_operation) pycutlass.compiler.add_module(operations) problem_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(args.nhwc[0], args.nhwc[1], args.nhwc[2], args.nhwc[3]), cutlass_bindings.Tensor4DCoord(args.krsc[0], args.krsc[1], args.krsc[2], args.krsc[3]), cutlass_bindings.Tensor4DCoord(args.pad[0], args.pad[1], args.pad[2], args.pad[3]), cutlass_bindings.MatrixCoord(args.stride[0], args.stride[1]), cutlass_bindings.MatrixCoord(args.dilation[0], args.dilation[1]), cutlass_bindings.conv.Mode.cross_correlation, args.split_k_slices, 1 ) # User-provide inputs tensor_A_size = cutlass_bindings.conv.implicit_gemm_tensor_a_size( conv_kind, problem_size ) tensor_B_size = cutlass_bindings.conv.implicit_gemm_tensor_b_size( conv_kind, problem_size ) if args.bias: tensor_C_size = cutlass_bindings.conv.implicit_gemm_tensor_c_extent( conv_kind, problem_size ).at(3) else: tensor_C_size = cutlass_bindings.conv.implicit_gemm_tensor_c_size( conv_kind, problem_size ) tensor_D_size = cutlass_bindings.conv.implicit_gemm_tensor_c_size( conv_kind, problem_size ) if args.element_a != "int8": tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-8.5, 7.5)) else: tensor_A = torch.empty(size=(tensor_A_size,), dtype=getattr(torch, args.element_a), device="cuda").uniform_(-2, 2) if args.element_b != "int8": tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-8.5, 7.5)) else: tensor_B = torch.empty(size=(tensor_B_size,), dtype=getattr(torch, args.element_b), device="cuda").uniform_(-2, 2) if args.element_c != "int8": tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-8.5, 7.5)) else: tensor_C = torch.empty(size=(tensor_C_size,), dtype=getattr(torch, args.element_c), device="cuda").uniform_(-2, 2) tensor_D = torch.ones(size=(tensor_D_size,), dtype=getattr(torch, args.element_c), device="cuda") arguments = Conv2dArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op = operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), split_k_mode=getattr(cutlass_bindings.conv.SplitKMode, args.split_k_mode), split_k_slices=problem_size.split_k_slices ) if args.split_k_mode == "Parallel" and args.split_k_slices > 1: implicit_gemm_size = cutlass_bindings.conv.implicit_gemm_problem_size(conv_kind, arguments.problem_size) reduction_arguments = ReductionArguments( reduction_operation, problem_size=[implicit_gemm_size.m(), implicit_gemm_size.n()], partitions=problem_size.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op = reduction_operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), bias = arguments.bias ) operation.run(arguments) if args.split_k_mode == "Parallel" and args.split_k_slices > 1: reduction_operation.run(reduction_arguments) reduction_arguments.sync() else: arguments.sync() reference_model = Conv2dReferenceModule(A, B, C, conv_kind) tensor_D_ref = reference_model.run(tensor_A, tensor_B, tensor_C, arguments.problem_size, args.alpha, args.beta, args.bias) if (args.activation_function != "identity"): tensor_D_ref = getattr(F, args.activation_function)(*([tensor_D_ref,] + args.activation_args)) try: assert torch.equal(tensor_D, tensor_D_ref) except: assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2) print("Passed.")