/*************************************************************************************************** * Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include #include #include "cutlass_unit_test.h" #include "tools/util/half.h" #include "tools/util/host_tensor.h" #include "tools/util/tensor_view_io.h" #include "cutlass/gemm/volta884_gemm_traits.h" #include "cutlass/gemm/gemm.h" #include "cutlass/reduction/batched_reduction_traits.h" #include "tools/test/unit/gemm/gemm_testbed.h" #include "tools/test/unit/gemm/run_gemm.h" #if CUTLASS_ENABLE_TENSOR_CORE_MMA //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits16, volta884_h884gemm_128x256x512_nn) { const int splits_count = 16; const int m = 128; const int n = 256; const int k = 512; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kColumnMajor, cutlass::MatrixLayout::kColumnMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits16, volta884_h884gemm_128x256x512_nt) { const int splits_count = 16; const int m = 128; const int n = 256; const int k = 512; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kColumnMajor, cutlass::MatrixLayout::kRowMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits16, volta884_h884gemm_128x256x512_tn) { const int splits_count = 16; const int m = 128; const int n = 256; const int k = 512; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kRowMajor, cutlass::MatrixLayout::kColumnMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits16, volta884_h884gemm_128x256x512_tt) { const int splits_count = 16; const int m = 128; const int n = 256; const int k = 512; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kRowMajor, cutlass::MatrixLayout::kRowMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits10, volta884_h884gemm_128x256x88_nn) { /* m = 128, n = 256, overall_K = 88, splits_count = 10 for the first 9 partition k = overall_k / partitionK_count = 8 for the last partition last_k = overall_k - (partitionK_count - 1) * k = 16 for volta884 it is safe to make sure leading dim are multiple of 8 */ const int splits_count = 10; const int m = 128; const int n = 256; const int k = 88; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kColumnMajor, cutlass::MatrixLayout::kColumnMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits10, volta884_h884gemm_128x256x88_nt) { /* m = 128, n = 256, overall_K = 88, splits_count = 10 for the first 9 partition k = overall_k / partitionK_count = 8 for the last partition last_k = overall_k - (partitionK_count - 1) * k = 16 for volta884 it is safe to make sure leading dim are multiple of 8 */ const int splits_count = 10; const int m = 128; const int n = 256; const int k = 88; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kColumnMajor, cutlass::MatrixLayout::kRowMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits10, volta884_h884gemm_128x256x88_tn) { /* m = 128, n = 256, overall_K = 88, splits_count = 10 for the first 9 partition k = overall_k / partitionK_count = 8 for the last partition last_k = overall_k - (partitionK_count - 1) * k = 16 for volta884 it is safe to make sure leading dim are multiple of 8 */ const int splits_count = 10; const int m = 128; const int n = 256; const int k = 88; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kRowMajor, cutlass::MatrixLayout::kColumnMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits10, volta884_h884gemm_128x256x88_tt) { /* m = 128, n = 256, overall_K = 88, splits_count = 10 for the first 9 partition k = overall_k / partitionK_count = 8 for the last partition last_k = overall_k - (partitionK_count - 1) * k = 16 for volta884 it is safe to make sure leading dim are multiple of 8 */ const int splits_count = 10; const int m = 128; const int n = 256; const int k = 88; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kRowMajor, cutlass::MatrixLayout::kRowMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits10, volta884_h884gemm_128x256x256_nn) { /* m = 128, n = 256, overall_K = 256, splits_count = 10 for the first 9 partition k = overall_k / partitionK_count = 25 But if we require the partition mulitple to be 8, the first 9 partition k = k - (k % partition_mulitiple) = 24 for the last partition last_k = overall_k - (partitionK_count - 1) * k = 40 for volta884 it is safe to make sure leading dim are multiple of 8 */ const int splits_count = 10; const int m = 128; const int n = 256; const int k = 256; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kColumnMajor, cutlass::MatrixLayout::kColumnMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits10, volta884_h884gemm_128x256x256_nt) { /* m = 128, n = 256, overall_K = 256, splits_count = 10 for the first 9 partition k = overall_k / partitionK_count = 25 But if we require the partition mulitple to be 8, the first 9 partition k = k - (k % partition_mulitiple) = 24 for the last partition last_k = overall_k - (partitionK_count - 1) * k = 40 for volta884 it is safe to make sure leading dim are multiple of 8 */ const int splits_count = 10; const int m = 128; const int n = 256; const int k = 256; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kColumnMajor, cutlass::MatrixLayout::kRowMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits10, volta884_h884gemm_128x256x256_tn) { /* m = 128, n = 256, overall_K = 256, splits_count = 10 for the first 9 partition k = overall_k / partitionK_count = 25 But if we require the partition mulitple to be 8, the first 9 partition k = k - (k % partition_mulitiple) = 24 for the last partition last_k = overall_k - (partitionK_count - 1) * k = 40 for volta884 it is safe to make sure leading dim are multiple of 8 */ const int splits_count = 10; const int m = 128; const int n = 256; const int k = 256; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kRowMajor, cutlass::MatrixLayout::kColumnMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Volta884_splitK_h884gemm_64x64x32_splits10, volta884_h884gemm_128x256x256_tt) { /* m = 128, n = 256, overall_K = 256, splits_count = 10 for the first 9 partition k = overall_k / partitionK_count = 25 But if we require the partition mulitple to be 8, the first 9 partition k = k - (k % partition_mulitiple) = 24 for the last partition last_k = overall_k - (partitionK_count - 1) * k = 40 for volta884 it is safe to make sure leading dim are multiple of 8 */ const int splits_count = 10; const int m = 128; const int n = 256; const int k = 256; /*gemm traits*/ typedef cutlass::gemm::Volta884GemmTraits< cutlass::MatrixLayout::kRowMajor, cutlass::MatrixLayout::kRowMajor, cutlass::Shape<32, 64, 64>, cutlass::Shape<32, 64, 64>, half, half, half, 2 > GemmTraits; /*batched reduction traits*/ typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits; run_splitK_gemm(m, n, k, 8/*partitionK_multiple*/, 1.0f, 0.0f); } #endif