/*************************************************************************************************** * Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMM interface */ #pragma once #include #include #include #include "../../common/cutlass_unit_test.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/reference/host/gemm.h" #include "cutlass/util/reference/host/gemm_complex.h" #include "testbed_utils.h" namespace test { namespace gemm { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// template struct GemmWithReductionReference { using ElementAccumulator = typename Gemm::ElementAccumulator; using ElementCompute = typename Gemm::GemmKernel::Epilogue::ElementCompute; using ElementC = typename Gemm::ElementC; using ElementT = typename Gemm::GemmKernel::Epilogue::ElementTensor; // // Data members // BinaryOp binary_op; // // Methods // GemmWithReductionReference() { } ElementCompute operator()( ElementAccumulator d_y, ElementT t) { return binary_op(ElementCompute(d_y), ElementCompute(t)); } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Gemm, typename ReferenceOp > struct TestbedGemmWithReduction { using ElementAccumulator = typename Gemm::ElementAccumulator; using ElementT = typename Gemm::GemmKernel::Epilogue::ElementTensor; /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_C; uint64_t seed; cutlass::HostTensor tensor_A; cutlass::HostTensor tensor_B; cutlass::HostTensor tensor_C; cutlass::HostTensor tensor_D; cutlass::HostTensor tensor_Reduction; cutlass::HostTensor tensor_Tensor; cutlass::HostTensor tensor_C_ref; cutlass::HostTensor reference_d_Y; cutlass::HostTensor reference_D; cutlass::HostTensor reference_Reduction; // // Methods // TestbedGemmWithReduction( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } /// Helper to initialize a tensor view template bool initialize_tensor( cutlass::TensorView view, cutlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits::value; int bits_output = cutlass::sizeof_bits::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, 0); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == cutlass::Distribution::Sequential) { for (int m = 0; m < view.extent().row(); ++m) { for (int n = 0; n < view.extent().column(); ++n) { //view.at({m, n}) = Element(float(((idx ++) % 17) - 8)); view.at({m, n}) = (n == 0 ? Element(m) : Element()); } } } else { // TODO: Implement the rest EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Initializes data structures void initialize(cutlass::gemm::GemmCoord problem_size) { // // Allocate the GEMM workspace // tensor_A.resize(problem_size.mk()); tensor_B.resize(problem_size.kn()); tensor_C.resize(problem_size.mn()); tensor_D.resize(problem_size.mn()); tensor_Reduction.resize({ problem_size.m(), (problem_size.n() - 1 + Gemm::ThreadblockShape::kN) / Gemm::ThreadblockShape::kN }); tensor_Tensor.resize(problem_size.mn()); reference_D.resize(problem_size.mn(), false); reference_d_Y.resize(problem_size.mn(), false); tensor_C_ref.resize(problem_size.mn(), false); reference_Reduction.resize({problem_size.m(), 1}, false); EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019)); EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2018)); EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 2017)); EXPECT_TRUE(initialize_tensor(tensor_Tensor.host_view(), init_C, seed + 2020)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. tensor_A.host_view().at({0, 0}) = typename Gemm::ElementA(1); tensor_B.host_view().at({0, 0}) = typename Gemm::ElementB(1); tensor_C.host_view().at({0, 0}) = typename Gemm::ElementC(1); for (int m = 0; m < tensor_C_ref.extent().row(); ++m) { for (int n = 0; n < tensor_C_ref.extent().column(); ++n) { tensor_C_ref.at({m, n}) = ElementAccumulator(tensor_C.at({m, n})); } } tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D.sync_device(); tensor_Reduction.sync_device(); tensor_Tensor.sync_device(); } /// Compares computed reference with device reference and outputs to a file if incorrect bool compare_reference( cutlass::gemm::GemmCoord problem_size, ElementAccumulator alpha, ElementAccumulator beta) { tensor_Reduction.sync_host(); tensor_D.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_Reduction.host_view()), 0); bool passed = true; for (int m = 0; m < tensor_Reduction.extent().row(); ++m) { ElementAccumulator reduced_value = ElementAccumulator(); for (int j = 0; j < tensor_Reduction.extent().column(); ++j) { reduced_value += tensor_Reduction.at({m, j}); } if (reduced_value != reference_Reduction.at({m, 0})) { std::cout << "Error in bias[" << m << "] - Expected: " << reference_Reduction.at({m, 0}) << ", got: " << reduced_value << std::endl; passed = false; break; } } EXPECT_TRUE(passed) << "Reduction is incorect."; if (!cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view())) { EXPECT_TRUE(false) << " mismatched reference"; passed = false; } if (!passed) { /* std::stringstream fname; fname << "error_Gemm_device_" << problem_size.m() << "x" << problem_size.n() << "x" << problem_size.k() << "_" << Gemm::ThreadblockShape::kM << "x" << Gemm::ThreadblockShape::kN << "x" << Gemm::ThreadblockShape::kK << "_" << Gemm::WarpShape::kM << "x" << Gemm::WarpShape::kN << "x" << Gemm::WarpShape::kK << ".txt"; std::ofstream file(fname.str()); */ std::ofstream file("testbed_universal_errors_sm70.txt"); file << "problem: " << problem_size << ", alpha: " << alpha << ", beta: " << beta << "\n\n"; file << "A =\n" << tensor_A.host_view() << "\nB =\n" << tensor_B.host_view() << "\nC =\n" << tensor_C.host_view() << "\nT = \n" << tensor_Tensor.host_view() << "\n\nReference =\n" << reference_D.host_view() << "\nComputed =\n" << tensor_D.host_view() << "\n\nReduction =\n" << tensor_Reduction.host_view() << "\n" << "\nReference reduction =\n" << reference_Reduction.host_view() << "\n"; } return passed; } /// Verifies the result is a GEMM bool verify( cutlass::gemm::GemmCoord problem_size, ElementAccumulator alpha, ElementAccumulator beta) { // // Verify // cutlass::reference::host::GemmComplex< typename Gemm::ElementA, typename Gemm::LayoutA, typename Gemm::ElementB, typename Gemm::LayoutB, ElementAccumulator, typename Gemm::LayoutC, ElementAccumulator, ElementAccumulator >( problem_size, alpha, tensor_A.host_ref(), Gemm::kTransformA, tensor_B.host_ref(), Gemm::kTransformB, beta, tensor_C_ref.host_ref(), reference_d_Y.host_ref(), ElementAccumulator(0) ); using ElementC = typename Gemm::ElementC; ReferenceOp reference_op; // compute backwards for (int m = 0; m < problem_size.m(); ++m) { ElementAccumulator reduced_value = ElementAccumulator(); for (int n = 0; n < problem_size.n(); ++n) { ElementAccumulator d_full = reference_op(reference_d_Y.at({m, n}), tensor_Tensor.at({m, n})); reduced_value += d_full; reference_D.at({m, n}) = ElementC(d_full); } reference_Reduction.at({m, 0}) = reduced_value; } return compare_reference(problem_size, alpha, beta); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { // // Determine SMEM requirements and waive if not satisfied // int smem_size = int(sizeof(typename Gemm::GemmKernel::SharedStorage)); cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.sharedMemPerBlockOptin < smem_size) { return false; } return true; } /// Executes one test bool run( cutlass::gemm::GemmUniversalMode mode, cutlass::gemm::GemmCoord problem_size, int batch_count = 1, ElementAccumulator alpha = ElementAccumulator(1), ElementAccumulator beta = ElementAccumulator(0)) { // Waive test if insufficient CUDA device if (!sufficient()) { if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) { std::cerr << "Test waived due to insufficient CUDA device." << std::endl; } return true; } this->initialize(problem_size); // // Initialize the GEMM operator // typename Gemm::Arguments arguments{ mode, problem_size, batch_count, {alpha, beta}, tensor_A.device_data(), tensor_B.device_data(), tensor_C.device_data(), tensor_D.device_data(), tensor_Reduction.device_data(), tensor_Tensor.device_data(), problem_size.m() * problem_size.k(), problem_size.n() * problem_size.k(), problem_size.m() * problem_size.n(), problem_size.m() * problem_size.n(), problem_size.m(), problem_size.m() * problem_size.n(), tensor_A.layout().stride(0), tensor_B.layout().stride(0), tensor_C.layout().stride(0), tensor_D.layout().stride(0), tensor_Reduction.layout().stride(0), tensor_Tensor.layout().stride(0), }; Gemm gemm_op; size_t workspace_size = Gemm::get_workspace_size(arguments); cutlass::device_memory::allocation workspace(workspace_size); cutlass::Status status = gemm_op.initialize(arguments, workspace.get()); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Run the GEMM // status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Verify // bool passed = this->verify(problem_size, alpha, beta); if (!passed) { std::cout << "Failed with batch_count/split_k_slices = " << batch_count << std::endl; } // // Profile // #if 0 // profiling disabled for now. int const kWorkspaces = 100; cutlass::DeviceAllocation profiling_tensor_A(tensor_A.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_B(tensor_B.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_C(tensor_C.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_D(tensor_D.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_Reduction(tensor_Reduction.capacity() * kWorkspaces); cutlass::DeviceAllocation profiling_tensor_Tensor(tensor_Tensor.capacity() * kWorkspaces); cudaEvent_t events[2]; for (auto & event : events) { cudaError_t result = cudaEventCreate(&event); if (result != cudaSuccess) { EXPECT_EQ(result, cudaSuccess) << " cudaEventCreate() failed with error " << cudaGetErrorString(result); return false; break; } } int const kWarmupIterations = 5; int const kProfilingIterations = 100; for (int i = 0; i < kWarmupIterations; ++i) { status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); } cudaError_t result = cudaEventRecord(events[0]); EXPECT_EQ(result, cudaSuccess); for (int i = 0; i < kProfilingIterations; ++i) { typename Gemm::Arguments arguments{ mode, problem_size, batch_count, {alpha, beta}, profiling_tensor_A.get() + tensor_A.capacity() * (i % kWorkspaces), profiling_tensor_B.get() + tensor_B.capacity() * (i % kWorkspaces), profiling_tensor_C.get() + tensor_C.capacity() * (i % kWorkspaces), profiling_tensor_D.get() + tensor_D.capacity() * (i % kWorkspaces), profiling_tensor_Reduction.get() + tensor_Reduction.capacity() * (i % kWorkspaces), profiling_tensor_Tensor.get() + tensor_Tensor.capacity() * (i % kWorkspaces), problem_size.m() * problem_size.k(), problem_size.n() * problem_size.k(), problem_size.m() * problem_size.n(), problem_size.m() * problem_size.n(), problem_size.m(), problem_size.m() * problem_size.n(), tensor_A.layout().stride(0), tensor_B.layout().stride(0), tensor_C.layout().stride(0), tensor_D.layout().stride(0), tensor_Reduction.layout().stride(0), tensor_Tensor.layout().stride(0), }; gemm_op.initialize(arguments, workspace.get()); status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); } result = cudaEventRecord(events[1]); EXPECT_EQ(result, cudaSuccess); result = cudaDeviceSynchronize(); EXPECT_EQ(result, cudaSuccess); float elapsed_time = 0; result = cudaEventElapsedTime(&elapsed_time, events[0], events[1]); EXPECT_EQ(result, cudaSuccess); double average_time = double(elapsed_time) / double(kProfilingIterations); std::cout << problem_size << ": " << average_time << " ms" << std::endl; for (auto & event : events) { cudaEventDestroy(event); } #endif return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template bool TestGemmWithReduction( cutlass::gemm::GemmCoord const & problem_size, cutlass::gemm::GemmUniversalMode mode, int batch_count = 1, double alpha = 1.0, double beta = 2.0) { bool passed = true; TestbedGemmWithReduction testbed; using ElementAccumulator = typename Gemm::ElementAccumulator; passed = testbed.run( mode, problem_size, batch_count, cutlass::from_real(alpha), cutlass::from_real(beta) ); return passed; } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace device } // namespace gemm } // namespace test /////////////////////////////////////////////////////////////////////////////////////////////////