/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include "cutlass_unit_test.h" #include "../hopper/tma_load_testbed.hpp" using namespace cute; using namespace cutlass::test; #if CUDA_12_0_SM90_FEATURES_SUPPORTED template auto test_tma_load(GMEM_Layout const& gmem_layout, SMEM_Layout const& smem_layout, CTA_Tile const& cta_tile) { return test_tma_load(SM90_TMA_LOAD{}, gmem_layout, smem_layout, cta_tile); } template auto test_tma_load(GMEM_Layout const& gmem_layout, SMEM_Layout const& smem_layout) { return test_tma_load(gmem_layout, smem_layout, product_each(shape(smem_layout))); } TEST(SM90_CuTe_Hopper, Tma_Load_1D) { { Layout smem_layout = Layout<_256, _1>{}; { Layout gmem_layout = smem_layout; test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(128, GenColMajor{}); test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(384, GenColMajor{}); test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } } { Layout smem_layout = Layout, Stride<_1,_8>>{}; { Layout gmem_layout = smem_layout; test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } // This doesn't result in a 1D TMA, even though it could/should... { Layout gmem_layout = tile_to_shape(smem_layout, Shape<_16,_16>{}); test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } } } TEST(SM90_CuTe_Hopper, Tma_Load_32x32_Col) { Layout smem_layout = Layout, Stride<_1,_32>>{}; { Layout gmem_layout = smem_layout; test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(make_shape(32,32), GenColMajor{}); test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(make_shape(32,32), make_stride(Int<1>{}, 1024)); test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } } TEST(SM90_CuTe_Hopper, Tma_Load_32x32_Row) { Layout smem_layout = Layout, Stride<_32,_1>>{}; { Layout gmem_layout = smem_layout; test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(make_shape(32,32), GenRowMajor{}); test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } { Layout gmem_layout = make_layout(make_shape(32,32), make_stride(1024, Int<1>{})); test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } } template typename SWIZZLE_ATOM> void test_tma_load_swizzle_atom_mn() { auto smem_layout = SWIZZLE_ATOM{}; { // Static gmem //Layout gmem_layout = make_layout(shape(smem_layout), GenColMajor{}); //test_tma_load(gmem_layout, smem_layout); } { // Dynamic gmem Layout gmem_layout = make_layout(make_shape(2*uint32_t(size<0>(smem_layout)), 2*uint32_t(size<1>(smem_layout))), GenColMajor{}); test_tma_load(gmem_layout, smem_layout); } } template typename SWIZZLE_ATOM> void test_tma_load_swizzle_atom_k() { auto smem_layout = SWIZZLE_ATOM{}; { // Static gmem //Layout gmem_layout = make_layout(shape(smem_layout), GenRowMajor{}); //test_tma_load(gmem_layout, smem_layout); } { // Dynamic gmem Layout gmem_layout = make_layout(make_shape(2*uint32_t(size<0>(smem_layout)), 2*uint32_t(size<1>(smem_layout))), GenRowMajor{}); test_tma_load(gmem_layout, smem_layout); } } TEST(SM90_CuTe_Hopper, Tma_Load_Swizzle_Atoms) { test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn< float, GMMA::Layout_MN_SW128_Atom>(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn< float, GMMA::Layout_MN_SW64_Atom>(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn< float, GMMA::Layout_MN_SW32_Atom>(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_mn< float, GMMA::Layout_MN_INTER_Atom>(); test_tma_load_swizzle_atom_mn(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k< float, GMMA::Layout_K_SW128_Atom>(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k< float, GMMA::Layout_K_SW64_Atom>(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k< float, GMMA::Layout_K_SW32_Atom>(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k(); test_tma_load_swizzle_atom_k< float, GMMA::Layout_K_INTER_Atom>(); test_tma_load_swizzle_atom_k(); } template typename SWIZZLE_ATOM> auto test_tma_load_swizzle_tile_mn() { auto smem_layout = tile_to_shape(SWIZZLE_ATOM{}, Shape<_128,_128>{}); Layout gmem_layout = make_layout(make_shape(int(size<0>(smem_layout)), int(size<1>(smem_layout))), GenColMajor{}); return test_tma_load(gmem_layout, smem_layout); } template typename SWIZZLE_ATOM> auto test_tma_load_swizzle_tile_k() { auto smem_layout = tile_to_shape(SWIZZLE_ATOM{}, Shape<_128,_128>{}); Layout gmem_layout = make_layout(make_shape(int(size<0>(smem_layout)), int(size<1>(smem_layout))), GenRowMajor{}); return test_tma_load(gmem_layout, smem_layout); } TEST(SM90_CuTe_Hopper, Tma_Load_Swizzle_Tiles) { // Other T-types use too much smem test_tma_load_swizzle_tile_mn(); test_tma_load_swizzle_tile_mn(); test_tma_load_swizzle_tile_mn(); test_tma_load_swizzle_tile_mn(); test_tma_load_swizzle_tile_mn(); test_tma_load_swizzle_tile_mn(); test_tma_load_swizzle_tile_mn(); test_tma_load_swizzle_tile_mn(); test_tma_load_swizzle_tile_k(); test_tma_load_swizzle_tile_k(); test_tma_load_swizzle_tile_k(); test_tma_load_swizzle_tile_k(); test_tma_load_swizzle_tile_k(); test_tma_load_swizzle_tile_k(); test_tma_load_swizzle_tile_k(); test_tma_load_swizzle_tile_k(); } // Tensor by-mode TEST(SM90_CuTe_Hopper, Tma_Load_Tensor) { // 3-mode TMA { Layout gmem_layout = make_layout(make_shape(128, 64, 5)); auto cta_tile = Shape<_64, _32>{}; // GMEM Tiling: // Take 64-elem from m // Take 32-elem from k auto smem_layout = make_layout(Shape<_64,_32>{}); test_tma_load(gmem_layout, smem_layout, cta_tile); } // 4-mode TMA { Layout gmem_layout = make_layout(make_shape(make_shape(80,40),make_shape(32,12))); auto cta_tile = Shape,Shape<_32,_2>>{}; // GMEM Tiling: // Take 16-elem from m0, 8-elem from m1, // Take 32-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_128,_64>{}); test_tma_load(gmem_layout, smem_layout, cta_tile); } // 5-mode TMA { Layout gmem_layout = make_layout(make_shape(make_shape(32,32,32),make_shape(32,12))); auto cta_tile = Shape,Shape<_16,_2>>{}; // GMEM Tiling: // Take 4-elem from m0, 4-elem from m1, 5-elem from m2 // Take 32-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_128,_32>{}); test_tma_load(gmem_layout, smem_layout, cta_tile); } } // Tensor Multimode -- TMA with more than 5 modes in GMEM (packs residual modes into last TMA mode) TEST(SM90_CuTe_Hopper, Tma_Load_Tensor_Multimode) { { Layout gmem_layout = make_layout(make_shape(make_shape(32,3,2,2),make_shape(32,4,2))); auto cta_tile = Shape, Shape<_32,_2>>{}; // GMEM Tiling: // Take 32-elem from m0 // Take 32-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_32,_64>{}); test_tma_load(gmem_layout, smem_layout, cta_tile); } { Layout gmem_layout = make_layout(make_shape(make_shape(64,3,2,2),make_shape(32,4,2))); auto cta_tile = Shape, Shape<_32,_2>>{}; // GMEM Tiling: // Take 32-elem from m0, 3-elem from m1 // Take 32-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_96,_64>{}); test_tma_load(gmem_layout, smem_layout, cta_tile); } { Layout gmem_layout = make_layout(make_shape(make_shape(64,3,2,3,2),make_shape(32,4,2,2))); auto cta_tile = Shape, Shape<_16,_2>>{}; // GMEM Tiling: // Take 32-elem from m0 // Take 16-elem from k0, 2-elem from k1 auto smem_layout = make_layout(Shape<_32,_32>{}); test_tma_load(gmem_layout, smem_layout, cta_tile); } } TEST(SM90_CuTe_Hopper, Tma_Load_Coalesce) { // Interleaved ColMajor { Layout gmem_layout = make_layout(make_shape ( 128, make_shape (_4{}, 128)), make_stride( _4{}, make_stride(_1{}, 512))); auto smem_layout = make_layout(make_shape (_32{}, make_shape (_4{}, _32{})), make_stride( _4{}, make_stride(_1{}, _128{}))); // By default, uses cta_tile = Shape<_32,_128> auto tma = test_tma_load(gmem_layout, smem_layout); // Check the TMA rank EXPECT_EQ(rank(tma.get_tma_tensor(shape(gmem_layout))(0)), 2); } // Interleaved RowMajor { Layout gmem_layout = make_layout(make_shape (make_shape (_4{}, 128), 128), make_stride(make_stride(_1{}, 512), _4{})); auto smem_layout = make_layout(make_shape (make_shape (_4{}, _32{}), _32{}), make_stride(make_stride(_1{}, _128{}), _4{})); // By default, uses cta_tile = Shape<_128,_32> auto tma = test_tma_load(gmem_layout, smem_layout); // Check the TMA rank EXPECT_EQ(rank(tma.get_tma_tensor(shape(gmem_layout))(0)), 2); } // Account for stride-0 modes within the TMA tile { Layout gmem_layout = make_layout(make_shape ( 128, make_shape (_32{}, 4)), make_stride( _1{}, make_stride( _0{}, 128))); auto smem_layout = make_layout(make_shape (_64{}, make_shape (_32{} )), make_stride( _1{}, make_stride( _0{} ))); // By default, uses cta_tile = Shape<_64,_32> auto tma = test_tma_load(gmem_layout, smem_layout); // Check the TMA rank EXPECT_EQ(rank(tma.get_tma_tensor(shape(gmem_layout))(0)), 2); } // Coalesce many modes and account for stride-0 modes within the TMA tile { Layout gmem_layout = make_layout(make_shape (make_shape (_32{},_4{}, 4), _32{}, make_shape (_4{}, 4)), make_stride(make_stride(_16{},_4{}, 2048), _0{}, make_stride(_1{}, _512{}))); auto smem_layout = make_layout(make_shape (make_shape (_32{},_4{} ), _32{}, make_shape (_4{} )), make_stride(make_stride(_16{},_4{} ), _0{}, make_stride(_1{} ))); // By default, uses cta_tile = Shape<_128,_32,_4> auto tma = test_tma_load(gmem_layout, smem_layout); // Check the TMA rank (Could be 3 instead of 4 with even better coalescing...?) EXPECT_EQ(rank(tma.get_tma_tensor(shape(gmem_layout))(0)), 4); } } TEST(SM90_CuTe_Hopper, Tma_Load_InternalType) { Layout smem_layout = Layout, Stride<_1,_32>>{}; Layout gmem_layout = make_layout(make_shape(64, 64)); // Downcasted tensors to smaller TmaTypes { test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float, uint8_t>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } // Upcasted tensors to larger TmaTypes { test_tma_load(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); test_tma_load< float, uint64_t>(gmem_layout, smem_layout); test_tma_load(gmem_layout, smem_layout); } // Complex is 128bit, which the TMA has no concept of { test_tma_load, uint64_t>(gmem_layout, smem_layout); test_tma_load, uint32_t>(gmem_layout, smem_layout); } } #endif