/*************************************************************************************************** * Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Implicit GEMM testbed sizes for Conv2d problem */ #pragma once #include #include "../../common/cutlass_unit_test.h" #include "cutlass/cutlass.h" #include "cutlass/layout/matrix.h" #include "cutlass/conv/convolution.h" #include "cutlass/conv/conv2d_problem_size.h" #define CUTLASS_CONV_UNIT_TEST_RIGOROUS_SIZE_ENABLED 1 namespace test { namespace conv { namespace device { using Conv2dProblemVector = std::vector; // // Structures to prune items from Conv2dProblemVector // // Specification template for pruning items for convolution problem lists template struct Specification { virtual ~Specification() = default; virtual bool is_satisfied(T item) const = 0; }; // input size (NHWC) specification struct InputSizeSpecification : Specification { cutlass::Tensor4DCoord input_size; InputSizeSpecification(cutlass::Tensor4DCoord input_size_) : input_size(input_size_) {} bool is_satisfied(cutlass::conv::Conv2dProblemSize item) const override { return ((input_size.n() == item.N) && (input_size.h() == item.H) && (input_size.w() == item.W) && (input_size.c() == item.C)); } }; // stride (stride_h, stride_w) specification struct StrideSpecification : Specification { cutlass::MatrixCoord stride; StrideSpecification(cutlass::MatrixCoord stride_) : stride(stride_) {} bool is_satisfied(cutlass::conv::Conv2dProblemSize item) const override { return ((stride.row() == item.stride_h) && (stride.column() == item.stride_h)); } }; // channel (C,K) specification, must be multiple of minimum channel struct ChannelDivisibilitySpecification : Specification { int channel_multiple; ChannelDivisibilitySpecification(int channel_multiple_) : channel_multiple(channel_multiple_) {} bool is_satisfied(cutlass::conv::Conv2dProblemSize item) const override { return ((item.K % channel_multiple == 0) && (item.C % channel_multiple == 0)); } }; // // Pruning function for items from Conv2dProblemVector based on a Specification // inline Conv2dProblemVector prune(Conv2dProblemVector const &items, Specification const &spec) { Conv2dProblemVector pruned_list; for (auto& p : items) if (spec.is_satisfied(p)) pruned_list.push_back(p); return pruned_list; } //////////////////////////////////////////////////////////////////////////// /// Structure TestbedConv2dProblemSizes initializes and holds conv default and /// important network sizes //////////////////////////////////////////////////////////////////////////// struct TestbedConv2dProblemSizes { // // Data members // int minimum_channel_size; Conv2dProblemVector conv2d_default_sizes; Conv2dProblemVector conv2d_rigorous_sizes; Conv2dProblemVector conv2d_resnet50_sizes; Conv2dProblemVector conv2d_resnet50_sizes_perf; // // Methods // /// Default ctor TestbedConv2dProblemSizes(int minimum_channel_size_ = 64): minimum_channel_size (minimum_channel_size_) { initialize_conv2d_default_sizes(); initialize_conv2d_rigorous_sizes(); initialize_conv2d_resnet50_sizes(conv2d_resnet50_sizes, 1 /*batch-size*/); initialize_conv2d_resnet50_sizes(conv2d_resnet50_sizes_perf, 34 /*batch-size*/); filter_all(); } /// Eliminates some illegal cases void filter_all() { Conv2dProblemVector *problems_vectors[] = { &conv2d_default_sizes, &conv2d_rigorous_sizes, &conv2d_resnet50_sizes, &conv2d_resnet50_sizes_perf }; for (Conv2dProblemVector *problems : problems_vectors) { Conv2dProblemVector filtered; for (cutlass::conv::Conv2dProblemSize const & problem : *problems) { if (!(problem.C % minimum_channel_size)) { filtered.push_back(problem); } } *problems = filtered; } } // Add a few standard convolution problem sizes void initialize_conv2d_default_sizes() { //////////////////////////////////////////////////////////////////////////////////////////// // Very Small input size (1x8x8xminimum_channel_size), filter size (3x3 - 7x7), stride (1,1) // C < CTA::K and non-multiples of CTA::K. Typical CTA::K = {32, 64} //////////////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, minimum_channel_size}, // input size (NHWC) {8, 3, 3, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, minimum_channel_size}, // input size (NHWC) {8, 4, 4, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, minimum_channel_size}, // input size (NHWC) {8, 5, 5, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, minimum_channel_size}, // input size (NHWC) {8, 6, 5, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, minimum_channel_size}, // input size (NHWC) {8, 6, 6, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 8, 8, minimum_channel_size}, // input size (NHWC) {8, 7, 7, minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////// // Medium input size (1x16x16x128), filter size (1x1, 2x2, 3x3, 5x5), stride (1, 1) //////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 15, 19, 160}, // input size (NHWC) {224, 1, 1, 160}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 16, 16, 160}, // input size (NHWC) {224, 2, 3, 160}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 23, 21, 128}, // input size (NHWC) {224, 3, 3, 128}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 29, 37, 160}, // input size (NHWC) {224, 5, 5, 160}, // filter size (KRSC) {2, 2, 2, 2}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////// // C > CTA::K and non-multiples of CTA::K. Typical CTA::K = {32, 64} //////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 15, 19, 32 + minimum_channel_size}, // input size (NHWC) {96, 3, 3, 32 + minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 16, 16, 64 + minimum_channel_size}, // input size (NHWC) {96, 3, 3, 64 + minimum_channel_size}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); //////////////////////////////////////////////////////////////////////////////////// // Medium input size (1x16x16x128), filter size (1x1, 3,x3, 5x5), stride (2, 2) //////////////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 19, 37, 160}, // input size (NHWC) {224, 3, 3, 160}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 16, 16, 288}, // input size (NHWC) {160, 5, 5, 288}, // filter size (KRSC) {2, 2, 2, 2}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); ///////////////////////////////////////////////////////////////////////////// // Additional input size ///////////////////////////////////////////////////////////////////////////// conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {3, 28, 28, 256}, // input size (NHWC) {256, 2, 2, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {32, 32, 32, 32}, // input size (NHWC) {32, 1, 1, 32}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {4, 3, 3, 128}, // input size (NHWC) {256, 3, 3, 128}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) {4, 3, 3, 256} // output size (NPQK) )); conv2d_default_sizes.push_back(cutlass::conv::Conv2dProblemSize( {4, 1, 1, 256}, // input size (NHWC) {328, 3, 3, 256}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1}, // dilation (dilation_h, dilation_w) {4, 1, 1, 328} // output size (NPQK) )); } // Add a few large and rigorous convolution problem sizes void initialize_conv2d_rigorous_sizes() { #if CUTLASS_CONV_UNIT_TEST_RIGOROUS_SIZE_ENABLED conv2d_rigorous_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 124, 224, 96}, // input size (NHWC) {24, 7, 7, 96}, // filter size (KRSC) {1, 229, 129, 32} // output size (NPQK) )); conv2d_rigorous_sizes.push_back(cutlass::conv::Conv2dProblemSize( {1, 233, 35, 48}, // input size (NHWC) {24, 7, 5, 48}, // filter size (KRSC) {1, 233, 35, 24} // output size (NPQK) )); #endif } // Add resent50 layers to unit testing sizes void initialize_conv2d_resnet50_sizes(Conv2dProblemVector &conv2d_problem_vector, int batch_size = 1){ #if 0 // Resnet50 first layer (layer_id = 0) with channel = 3 is not supported in cutlass conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( [1, 224, 224, 3], // input size (NHWC) [64, 7, 7, 3], // filter size (KRSC) [3, 3, 3, 3], // padding (pad_h, _, pad_w, _) [2, 2], // stride (stride_h, stride_w) [1, 1], // dilation (dilation_h, dilation_w) )); #endif conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 64}, // input size (NHWC) {256, 1, 1, 64}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 64}, // input size (NHWC) {64, 1, 1, 64}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 64}, // input size (NHWC) {64, 3, 3, 64}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 256}, // input size (NHWC) {64, 1, 1, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 256}, // input size (NHWC) {512, 1, 1, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 56, 56, 256}, // input size (NHWC) {128, 1, 1, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 128}, // input size (NHWC) {128, 3, 3, 128}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 128}, // input size (NHWC) {512, 1, 1, 128}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 512}, // input size (NHWC) {128, 1, 1, 512}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 512}, // input size (NHWC) {1024, 1, 1, 512}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 28, 28, 512}, // input size (NHWC) {256, 1, 1, 512}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 256}, // input size (NHWC) {256, 3, 3, 256}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 256}, // input size (NHWC) {1024, 1, 1, 256}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 1024}, // input size (NHWC) {256, 1, 1, 1024}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 1024}, // input size (NHWC) {2048, 1, 1, 1024}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 14, 14, 1024}, // input size (NHWC) {512, 1, 1, 1024}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {2, 2}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 7, 7, 512}, // input size (NHWC) {512, 3, 3, 512}, // filter size (KRSC) {1, 1, 1, 1}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 7, 7, 512}, // input size (NHWC) {2048, 1, 1, 512}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); conv2d_problem_vector.push_back(cutlass::conv::Conv2dProblemSize( {batch_size, 7, 7, 2048}, // input size (NHWC) {512, 1, 1, 2048}, // filter size (KRSC) {0, 0, 0, 0}, // padding (pad_h, _, pad_w, _) {1, 1}, // stride (stride_h, stride_w) {1, 1} // dilation (dilation_h, dilation_w) )); } }; } // namespace device } // namespace conv } // namespace test