################################################################################################# # # Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# import pycutlass from pycutlass import * from pycutlass.test import * from pycutlass.test.gemm_testbed import GemmUniversalLauncher if __name__ == '__main__': pycutlass.get_memory_pool(2**32, 2**32) pycutlass.compiler.nvcc() math_inst = MathInstruction( instruction_shape=[16, 8, 16], element_a=cutlass.float16, element_b=cutlass.float16, element_accumulator=cutlass.float32, opcode_class=cutlass.OpClass.TensorOp, math_operation=MathOperation.multiply_add ) tile_description = TileDescription( threadblock_shape=[256, 128, 32], stages=3, warp_count=[4, 2, 1], math_instruction=math_inst ) A = TensorDescription( element=cutlass.float16, layout=cutlass.RowMajor, alignment=4 ) B = TensorDescription( element=cutlass.float16, layout=cutlass.RowMajor, alignment=4 ) C = TensorDescription( element=cutlass.float32, layout=cutlass.ColumnMajor, alignment=4 ) element_epilogue = cutlass.float32 epilogue_functor = LinearCombination(cutlass.float32, 4, cutlass.float32, cutlass.float32) swizzling_functor = cutlass.IdentitySwizzle1 operation = GemmOperationUniversal( arch=80, tile_description=tile_description, A=A, B=B, C=C, element_epilogue=element_epilogue, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) profiler = GemmUniversalLauncher(operation, verification=False, profiling=True) python_runtime = profiler.run( mode=cutlass.gemm.Mode.Gemm, problem_size=cutlass.gemm.GemmCoord(4096, 4096, 4096) ) cpp_runtime = profiler.run_cutlass_profiler( mode=cutlass.gemm.Mode.Gemm, problem_size=cutlass.gemm.GemmCoord(4096, 4096, 4096), ) print(cpp_runtime / python_runtime)