################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with F16 operands on SM90 """ from functools import partial import cutlass import logging import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) cc = 90 @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM90 tests.') class GemmF16Sm90(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_specialized = partial(add_test_gemm, cls=GemmF16Sm90, element=cutlass.DataType.f16, warp_count=None, compilation_modes=['nvcc']) add_test_tensorop = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp) # Tests with 1x1x1 clusters add_test_unit_cluster = partial(add_test_tensorop, cluster_shape=[1, 1, 1]) add_test_unit_cluster(layouts=LayoutCombination.NNN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=3) add_test_unit_cluster(layouts=LayoutCombination.NNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.NTN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.NTT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[4, 4, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[4, 4, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 32], stages=None) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 64], stages=5) add_test_unit_cluster(layouts=LayoutCombination.TNT, alignments=[2, 2, 2], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 32], stages=None) # Tests with different cluster shapes add_test_cluster_shape = partial(add_test_tensorop, threadblock_shape=[64, 128, 64], stages=None) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 8], element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, cluster_shape=[2, 2, 1]) add_test_cluster_shape(layouts=LayoutCombination.TNN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[2, 2, 1]) add_test_cluster_shape(layouts=LayoutCombination.NTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[2, 2, 1]) add_test_cluster_shape(layouts=LayoutCombination.NNN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[2, 2, 1]) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[1, 4, 1]) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[2, 4, 1]) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[4, 1, 1]) add_test_cluster_shape(layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, cluster_shape=[4, 2, 1]) # Tests for different schedule modes add_test_schedule = partial(add_test_specialized, layouts=LayoutCombination.TTN, alignments=[8, 8, 4], element_output=cutlass.DataType.f32, element_accumulator=cutlass.DataType.f32, opclass=cutlass.OpcodeClass.TensorOp, threadblock_shape=[128, 128, 64], stages=None) add_test_schedule( cluster_shape=[1, 1, 1], kernel_schedule=cutlass.KernelScheduleType.TmaWarpSpecializedPingpong, epilogue_schedule=cutlass.EpilogueScheduleType.TmaWarpSpecialized ) add_test_schedule( cluster_shape=[1, 1, 1], kernel_schedule=cutlass.KernelScheduleType.TmaWarpSpecializedCooperative, epilogue_schedule=cutlass.EpilogueScheduleType.TmaWarpSpecializedCooperative ) add_test_schedule( cluster_shape=[2, 1, 1], kernel_schedule=cutlass.KernelScheduleType.TmaWarpSpecializedPingpong, epilogue_schedule=cutlass.EpilogueScheduleType.TmaWarpSpecialized ) add_test_schedule( cluster_shape=[2, 1, 1], kernel_schedule=cutlass.KernelScheduleType.TmaWarpSpecializedCooperative, epilogue_schedule=cutlass.EpilogueScheduleType.TmaWarpSpecializedCooperative ) # Tests using SIMT add_test_simt = partial(add_test_specialized, opclass=cutlass.OpcodeClass.Simt, alignments=[1, 1, 1], cluster_shape=[1, 1, 1], stages=2) add_test_simt(layouts=LayoutCombination.NNN, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 128, 8]) add_test_simt(layouts=LayoutCombination.TNN, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 128, 8]) add_test_simt(layouts=LayoutCombination.NTN, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[128, 64, 8]) add_test_simt(layouts=LayoutCombination.TTN, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f32, threadblock_shape=[ 64, 64, 8]) add_test_simt(layouts=LayoutCombination.NNT, element_output=cutlass.DataType.f16, element_accumulator=cutlass.DataType.f16, threadblock_shape=[128, 128, 8]) if __name__ == '__main__': unittest.main()