################################################################################################# # # Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Low-level functionality tests for GEMM with S8 operands on SM80 """ from functools import partial import cutlass import logging import unittest from cutlass.backend.test.utils import LayoutCombination, add_test_gemm from cutlass.backend.utils.device import device_cc cutlass.set_log_level(logging.WARNING) cc = 80 @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmS8Sm80(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass @unittest.skipIf(device_cc() < cc, 'Device compute capability is insufficient for SM80 tests.') class GemmS8Sm80StreamK(unittest.TestCase): """ Wrapper class to which tests will be added dynamically in __main__ """ pass add_test_specialized = partial(add_test_gemm, element=cutlass.DataType.s8, cc=cc, cluster_shape=[1, 1, 1]) # Tests using TensorOp add_test_tensorop = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp) add_test_tensorop(cls=GemmS8Sm80, layouts=LayoutCombination.TNN, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[256, 128, 64], warp_count=[4, 2, 1], stages=3) add_test_tensorop(cls=GemmS8Sm80, layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 256, 64], warp_count=[2, 4, 1], stages=3) add_test_tensorop(cls=GemmS8Sm80, layouts=LayoutCombination.TNN, alignments=[16, 16, 4], element_output=cutlass.DataType.s32, element_accumulator=cutlass.DataType.s32, threadblock_shape=[ 64, 64, 64], warp_count=[1, 1, 1], stages=4) # Tests using SIMT add_test_simt = partial(add_test_specialized, opclass=cutlass.OpcodeClass.Simt) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.NNN, alignments=[1, 1, 1], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.TNN, alignments=[1, 1, 1], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[ 64, 128, 8], warp_count=[1, 2, 1], stages=2) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.NTN, alignments=[1, 1, 1], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 64, 8], warp_count=[2, 1, 1], stages=2) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.TTN, alignments=[1, 1, 1], element_output=cutlass.DataType.s32, element_accumulator=cutlass.DataType.s32, threadblock_shape=[ 64, 64, 8], warp_count=[1, 1, 1], stages=2) add_test_simt(cls=GemmS8Sm80, layouts=LayoutCombination.NNT, alignments=[1, 1, 1], element_output=cutlass.DataType.s32, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 128, 8], warp_count=[2, 2, 1], stages=2) # Stream K tests add_test_streamk = partial(add_test_specialized, opclass=cutlass.OpcodeClass.TensorOp, swizzle=cutlass.swizzle.ThreadblockSwizzleStreamK) add_test_streamk(cls=GemmS8Sm80StreamK, layouts=LayoutCombination.TNT, alignments=[16, 16, 16], element_output=cutlass.DataType.s8, element_accumulator=cutlass.DataType.s32, threadblock_shape=[128, 256, 64], warp_count=[2, 4, 1], stages=3) if __name__ == '__main__': unittest.main()