/*************************************************************************************************** * Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for functional operators. */ #include "../common/cutlass_unit_test.h" #include "cutlass/functional.h" #include "cutlass/layout/matrix.h" #include "cutlass/util/host_tensor.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace core { namespace kernel { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Conversion template template __global__ void unary_operator(Element *d, Element const *a) { Operator op; *d = op(*a); } /// Conversion template template __global__ void binary_operator(Element *d, Element const *a, Element const *b, int Iterations = 1) { Operator op; Element a_x = *a; Element b_x = *b; CUTLASS_PRAGMA_NO_UNROLL for (int i = 0; i < Iterations; ++i) { b_x = op(a_x, b_x); } *d = b_x; } /// Conversion template template __global__ void trinary_operator( Element *d, Element const *a, Element const *b, Element const *c, int Iterations = 1) { Operator op; Element a_x = *a; Element b_x = *b; Element c_x = *c; CUTLASS_PRAGMA_NO_UNROLL for (int i = 0; i < Iterations; ++i) { c_x = op(a_x, b_x, c_x); } *d = c_x; } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace kernel } // namespace core } // namespace test ///////////////////////////////////////////////////////////////////////////////////////////////// template void Functional_plus_f16xN() { using Element = cutlass::Array; using Operator = cutlass::plus; using Tensor = cutlass::HostTensor; Tensor D({1, kN}); Tensor A({1, kN}); Tensor B({1, kN}); Tensor C({1, kN}); for (int i = 0; i < kN; ++i) { A.host_data()[i] = cutlass::half_t((i * 2 + 1) % 5); B.host_data()[i] = cutlass::half_t((i * 4 + 8) % 7); D.host_data()[i] = cutlass::half_t(0); } D.sync_device(); A.sync_device(); B.sync_device(); test::core::kernel::binary_operator<<< dim3(1,1), dim3(1,1) >>>( reinterpret_cast(D.device_data()), reinterpret_cast(A.device_data()), reinterpret_cast(B.device_data()) ); D.sync_host(); bool some_d_nonzero = false; for (int i = 0; i < kN; ++i) { float a = float(A.host_data()[i]); float b = float(B.host_data()[i]); float d = float(D.host_data()[i]); EXPECT_TRUE(d == (a + b)); if (d != 0) { some_d_nonzero = true; } } EXPECT_TRUE(some_d_nonzero); } TEST(Functional, plus_f16x16) { Functional_plus_f16xN<16>(); } TEST(Functional, plus_f16x17) { Functional_plus_f16xN<17>(); } ///////////////////////////////////////////////////////////////////////////////////////////////// template void Functional_minus_f16xN() { using Element = cutlass::Array; using Operator = cutlass::minus; using Tensor = cutlass::HostTensor; Tensor D({1, kN}); Tensor A({1, kN}); Tensor B({1, kN}); Tensor C({1, kN}); for (int i = 0; i < kN; ++i) { A.host_data()[i] = cutlass::half_t((i * 2 + 1) % 5); B.host_data()[i] = cutlass::half_t((i * 4 + 8) % 7); D.host_data()[i] = cutlass::half_t(0); } D.sync_device(); A.sync_device(); B.sync_device(); test::core::kernel::binary_operator<<< dim3(1,1), dim3(1,1) >>>( reinterpret_cast(D.device_data()), reinterpret_cast(A.device_data()), reinterpret_cast(B.device_data()) ); D.sync_host(); bool some_d_nonzero = false; for (int i = 0; i < kN; ++i) { float a = float(A.host_data()[i]); float b = float(B.host_data()[i]); float d = float(D.host_data()[i]); EXPECT_TRUE(d == (a - b)); if (d != 0) { some_d_nonzero = true; } } EXPECT_TRUE(some_d_nonzero); } TEST(Functional, minus_f16x16) { Functional_minus_f16xN<16>(); } TEST(Functional, minus_f16x17) { Functional_minus_f16xN<17>(); } ///////////////////////////////////////////////////////////////////////////////////////////////// template void Functional_multiplies_f16xN() { using Element = cutlass::Array; using Operator = cutlass::multiplies; using Tensor = cutlass::HostTensor; Tensor D({1, kN}); Tensor A({1, kN}); Tensor B({1, kN}); Tensor C({1, kN}); for (int i = 0; i < kN; ++i) { A.host_data()[i] = cutlass::half_t((i * 2 + 1) % 5); B.host_data()[i] = cutlass::half_t((i * 4 + 8) % 7); D.host_data()[i] = cutlass::half_t(0); } D.sync_device(); A.sync_device(); B.sync_device(); test::core::kernel::binary_operator<<< dim3(1,1), dim3(1,1) >>>( reinterpret_cast(D.device_data()), reinterpret_cast(A.device_data()), reinterpret_cast(B.device_data()) ); D.sync_host(); bool some_d_nonzero = false; for (int i = 0; i < kN; ++i) { float a = float(A.host_data()[i]); float b = float(B.host_data()[i]); float d = float(D.host_data()[i]); EXPECT_TRUE(d == (a * b)); if (d != 0) { some_d_nonzero = true; } } EXPECT_TRUE(some_d_nonzero); } TEST(Functional, multiplies_f16x16) { Functional_multiplies_f16xN<16>(); } TEST(Functional, multiplies_f16x17) { Functional_multiplies_f16xN<17>(); } ///////////////////////////////////////////////////////////////////////////////////////////////// template void Functional_divides_f16xN() { using Element = cutlass::Array; using Operator = cutlass::divides; using Tensor = cutlass::HostTensor; Tensor D({1, kN}); Tensor A({1, kN}); Tensor B({1, kN}); Tensor C({1, kN}); for (int i = 0; i < kN; ++i) { A.host_data()[i] = cutlass::half_t((i * 2 + 1) % 5); B.host_data()[i] = cutlass::half_t((i * 4 + 8) % 7); D.host_data()[i] = cutlass::half_t(0); } D.sync_device(); A.sync_device(); B.sync_device(); test::core::kernel::binary_operator<<< dim3(1,1), dim3(1,1) >>>( reinterpret_cast(D.device_data()), reinterpret_cast(A.device_data()), reinterpret_cast(B.device_data()) ); D.sync_host(); bool some_d_nonzero = false; for (int i = 0; i < kN; ++i) { float a = float(A.host_data()[i]); float b = float(B.host_data()[i]); float d = float(D.host_data()[i]); float expected = a / b; float const kThreshold = 0.0005f; if (std::isnan(expected)) { EXPECT_TRUE(std::isnan(d)); } else if (std::isinf(expected)) { EXPECT_TRUE(std::isinf(d)); } else { EXPECT_TRUE(std::abs(d - expected) < kThreshold) << "Got: " << d << " = " << a << " / " << b << ", expected: " << (a / b); } if (d != 0) { some_d_nonzero = true; } } EXPECT_TRUE(some_d_nonzero); } TEST(Functional, divides_f16x16) { Functional_divides_f16xN<16>(); } TEST(Functional, divides_f16x17) { Functional_divides_f16xN<17>(); } ///////////////////////////////////////////////////////////////////////////////////////////////// template void Functional_multiply_add_TxN() { using Element = cutlass::Array; using Operator = cutlass::multiply_add; using Tensor = cutlass::HostTensor; Tensor D({1, kN}); Tensor A({1, kN}); Tensor B({1, kN}); Tensor C({1, kN}); for (int i = 0; i < kN; ++i) { A.host_data()[i] = T((i * 2 + 1) % 5); B.host_data()[i] = T((i * 4 + 8) % 7); C.host_data()[i] = T((i * 3 + 11) % 11); D.host_data()[i] = T(0); } D.sync_device(); A.sync_device(); B.sync_device(); C.sync_device(); test::core::kernel::trinary_operator<<< dim3(1,1), dim3(1,1) >>>( reinterpret_cast(D.device_data()), reinterpret_cast(A.device_data()), reinterpret_cast(B.device_data()), reinterpret_cast(C.device_data()) ); D.sync_host(); bool some_d_nonzero = false; for (int i = 0; i < kN; ++i) { float a = float(A.host_data()[i]); float b = float(B.host_data()[i]); float c = float(C.host_data()[i]); float d = float(D.host_data()[i]); EXPECT_TRUE(d == (a * b + c)); if (d != 0) { some_d_nonzero = true; } } EXPECT_TRUE(some_d_nonzero); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(Functional, multiply_add_f16x16) { Functional_multiply_add_TxN(); } TEST(Functional, multiply_add_f16x17) { Functional_multiply_add_TxN(); } /////////////////////////////////////////////////////////////////////////////////////////////////