/*************************************************************************************************** * Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMM interface */ #pragma once #include #include #include #include "../../common/cutlass_unit_test.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/reference/host/gemm_complex.h" #include "testbed.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace gemm { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// template struct TestbedComplex : public Testbed { using Base = Testbed; using ElementAccumulator = typename Gemm::ElementAccumulator; using ElementCompute = typename Gemm::GemmKernel::Epilogue::OutputOp::ElementCompute; // // Methods // TestbedComplex( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): Base(init_A_, init_B_, init_C_, seed_) { } /// Verifies the result is a GEMM bool verify( cutlass::gemm::GemmCoord problem_size, ElementCompute alpha, ElementCompute beta) { // // Verify // cutlass::reference::host::GemmComplex( problem_size, alpha, this->tensor_A.host_ref(), Gemm::kTransformA, this->tensor_B.host_ref(), Gemm::kTransformB, beta, this->tensor_C.host_ref(), this->reference_D.host_ref(), ElementAccumulator(0) ); return this->compare_reference(problem_size, alpha, beta); } /// Executes one test bool run( cutlass::gemm::GemmCoord problem_size, int split_k_slices = 1, ElementCompute alpha = ElementCompute(1), ElementCompute beta = ElementCompute(0)) { this->initialize(problem_size); // // Initialize the GEMM operator // typename Gemm::Arguments arguments{ problem_size, this->tensor_A.device_ref(), this->tensor_B.device_ref(), this->tensor_C.device_ref(), this->tensor_D.device_ref(), {alpha, beta}, split_k_slices }; Gemm gemm_op; size_t workspace_size = Gemm::get_workspace_size(arguments); cutlass::device_memory::allocation workspace(workspace_size); cutlass::Status status = gemm_op.initialize(arguments, workspace.get()); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Run the GEMM // status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Verify // bool passed = this->verify(problem_size, alpha, beta); if (!passed) { std::cout << "Error with split_k_slices = " << split_k_slices << ", alpha: " << alpha << std::endl; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template bool TestAllGemmComplex() { bool passed = true; using ElementCompute = typename Gemm::EpilogueOutputOp::ElementCompute; int const kMinimumOperandElementSize = std::min( int(cutlass::sizeof_bits::value), int(cutlass::sizeof_bits::value)); int const kAlignment = cutlass::platform::is_same< typename Gemm::OperatorClass, cutlass::arch::OpClassSimt>::value ? 1 : 128 / kMinimumOperandElementSize; int problem_size_m[] = { kAlignment, 512 - 3*kAlignment }; int problem_size_n[] = { kAlignment, 512 - 2*kAlignment }; int problem_size_k[] = { kAlignment, 128 - kAlignment }; int split_k_slices[] = { 1, 2, 3 }; double problem_alpha[] = { 1 }; double problem_beta[] = { 2.0 }; TestbedComplex testbed; for (int m : problem_size_m) { for (int n : problem_size_n) { for (int k : problem_size_k) { for (int split_k : split_k_slices) { if (!Gemm::kSplitKSerial && split_k > 1) { continue; } for (auto alpha : problem_alpha) { for (auto beta : problem_beta) { cutlass::gemm::GemmCoord problem_size(m, n, k); passed = testbed.run( problem_size, split_k, cutlass::from_real(alpha), cutlass::from_real(beta) ); if (!passed) { return false; } } } } } } } return passed; } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace device } // namespace gemm } // namespace test /////////////////////////////////////////////////////////////////////////////////////////////////