/*************************************************************************************************** * Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for thread-level GEMM */ #pragma once #include "cutlass/gemm/thread/mma.h" #include "cutlass/layout/vector.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/gemm.h" namespace test { namespace gemm { namespace thread { ///////////////////////////////////////////////////////////////////////////////////////////////// /// Thread-level matrix multiply-accumulate template void kernel( typename Mma::ElementC *D, typename Mma::ElementA const *A, typename Mma::ElementB const *B, typename Mma::ElementC const *C) { auto ptr_D = reinterpret_cast *>(D); auto ptr_A = reinterpret_cast const *>(A); auto ptr_B = reinterpret_cast const *>(B); auto ptr_C = reinterpret_cast const *>(C); Mma mma; auto a = *ptr_A; auto b = *ptr_B; auto c = *ptr_C; using Btype = typename Mma::ElementB; cutlass::Array d; mma(d, a, b, c); *ptr_D = d; } ///////////////////////////////////////////////////////////////////////////////////////////////// /// Structure to compute the matrix product template < /// Size of the Gemm problem - concept: gemm::GemmShape<> typename Shape, /// Data type of A elements typename ElementA, /// Layout of A matrix (concept: MatrixLayout) typename LayoutA, /// Data type of B elements typename ElementB, /// Layout of B matrix (concept: MatrixLayout) typename LayoutB, /// Element type of C matrix typename ElementC, /// Layout of C matrix (concept: MatrixLayout) typename LayoutC > struct Testbed { /// Thread-level matrix multiply-accumulate operator using Mma = cutlass::gemm::thread::Mma< Shape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC >; // // Data members // cutlass::HostTensor tensor_A; cutlass::HostTensor tensor_B; cutlass::HostTensor tensor_C; cutlass::HostTensor tensor_D_computed; cutlass::HostTensor tensor_D_reference; // // Methods // /// Allocates workspace in device memory Testbed() { tensor_A.reset(cutlass::make_Coord(Shape::kM, Shape::kK), false); tensor_B.reset(cutlass::make_Coord(Shape::kK, Shape::kN), false); tensor_C.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); tensor_D_computed.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); tensor_D_reference.reset(cutlass::make_Coord(Shape::kM, Shape::kN), false); } /// Runs the test bool run() { // // initialize device memory // cutlass::reference::host::detail::RandomUniformFunc< ElementA > tfill_rand_func( 0, // seed 10, // max 0, // min 0); // bits after decimal cutlass::reference::host::detail::TensorFillRandomUniformFunc< ElementA, LayoutA > tfill_rand( tensor_A.host_view(), tfill_rand_func); for (auto i=0; i< Shape::kM; i++) for (auto j=0; j< Shape::kK; j++) tfill_rand(cutlass::make_Coord(i,j)); cutlass::reference::host::BlockFillSequential( tensor_B.host_data(), tensor_B.capacity(), ElementB(1), ElementB(2) ); cutlass::reference::host::TensorFill( tensor_C.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_computed.host_view(), ElementC(0) ); cutlass::reference::host::TensorFill( tensor_D_reference.host_view(), ElementC(0) ); // Host side call kernel( tensor_D_computed.host_data(), tensor_A.host_data(), tensor_B.host_data(), tensor_C.host_data()); // // Reference implementation // cutlass::reference::host::Gemm reference_gemm; reference_gemm( {Shape::kM, Shape::kN, Shape::kK}, ElementC(1), tensor_A.host_ref(), tensor_B.host_ref(), ElementC(0), tensor_D_reference.host_ref() ); // // Verify equivalence // // compare bool passed = cutlass::reference::host::TensorEquals( tensor_D_computed.host_view(), tensor_D_reference.host_view() ); EXPECT_TRUE(passed) << "A:\n" << tensor_A.host_view() << "\n\n" << "B:\n" << tensor_B.host_view() << "\n\n" << "C:\n" << tensor_C.host_view() << "\n\n" << "Reference:\n" << tensor_D_reference.host_view() << "\n\n" << "Computed:\n" << tensor_D_computed.host_view() << std::endl; return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace thread } // namespace gemm } // namespace test