/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit test for the launch_on_cluster function */ #include "../common/cutlass_unit_test.h" #include "cutlass/cluster_launch.hpp" #include "cute/arch/cluster_sm90.hpp" #include #include #include #if defined(CUTLASS_SM90_CLUSTER_LAUNCH_ENABLED) namespace { // (anonymous) // Using a struct instead of a lambda makes it possible // to name the deleter type without std::function // (which type-erases). struct scalar_deleter { void operator() (float* p) { if (p != nullptr) { cudaFree(p); } } }; using scalar_device_pointer = std::unique_ptr; // Each test needs to initialize this anew, // from a scalar instance that is in scope during the test. __device__ float* scalar_ptr_gpu; // A single scalar value on device. // The constructor allocates space on device for one value, // copies the value to device, and sets the global pointer // `scalar_ptr_gpu` (see above) to point to it. // sync_to_host() copies that value back to host. // // This class exists only for the tests in this file. // In order to know whether a kernel that launch_on_cluster // claimed to launch actually got launched, each kernel // performs a side effect: it modifies the scalar value // through the scalar_ptr_gpu value. // It performs a side effect through a global, // rather than through an argument, // so that we can test kernel launch // with kernels that take zero parameters. class scalar { private: static constexpr std::size_t num_bytes = sizeof(float); public: scalar(float value) : value_host_(value) { float* ptr_gpu_raw = nullptr; auto err = cudaMalloc(&ptr_gpu_raw, num_bytes); assert(err == cudaSuccess); scalar_device_pointer ptr_gpu{ptr_gpu_raw, scalar_deleter{}}; err = cudaMemcpy(ptr_gpu.get(), &value_host_, num_bytes, cudaMemcpyHostToDevice); assert(err == cudaSuccess); ptr_gpu_ = std::move(ptr_gpu); upload_device_pointer(); } float sync_to_host() { auto err = cudaMemcpy(&value_host_, ptr_gpu_.get(), num_bytes, cudaMemcpyDeviceToHost); assert(err == cudaSuccess); return value_host_; } private: void upload_device_pointer() { float* ptr_raw = ptr_gpu_.get(); auto err = cudaMemcpyToSymbol(scalar_ptr_gpu, &ptr_raw, sizeof(float*)); assert(err == cudaSuccess); } float value_host_ = 0.0; scalar_device_pointer ptr_gpu_; }; template CUTE_DEVICE void check_cluster_shape() { [[maybe_unused]] const dim3 cluster_shape = cute::cluster_shape(); assert(cluster_shape.x == cluster_x); assert(cluster_shape.y == cluster_y); assert(cluster_shape.z == cluster_z); } template __global__ void kernel_0() { check_cluster_shape(); // Write to global memory, so that we know // whether the kernel actually ran. const dim3 block_id = cute::block_id_in_cluster(); if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) { *scalar_ptr_gpu = 0.1f; } } template __global__ void kernel_1(int p0) { check_cluster_shape(); assert(p0 == expected_p0); // Write to global memory, so that we know // whether the kernel actually ran. const dim3 block_id = cute::block_id_in_cluster(); if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) { *scalar_ptr_gpu = 1.2f; } } template __global__ void kernel_2(int p0, void* p1, int p2) { check_cluster_shape(); assert(p0 == expected_p0); assert(p1 == nullptr); assert(p2 == expected_p2); // Write to global memory, so that we know // whether the kernel actually ran. const dim3 block_id = cute::block_id_in_cluster(); if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) { *scalar_ptr_gpu = 2.3f; } } struct OverloadedOperatorAmpersand { struct tag_t {}; // Test that kernel launch uses the actual address, // instead of any overloaded operator& that might exist. CUTE_HOST_DEVICE tag_t operator& () const { return {}; } int x = 0; int y = 0; int z = 0; int w = 0; }; static_assert(sizeof(OverloadedOperatorAmpersand) == 4 * sizeof(int)); template __global__ void kernel_3(int p0, OverloadedOperatorAmpersand p1, std::uint64_t p2) { check_cluster_shape(); assert(p0 == expected_p0); assert(p1.x == expected_p1_x); assert(p1.y == expected_p1_y); assert(p1.z == expected_p1_z); assert(p1.w == expected_p1_w); assert(p2 == expected_p2); // Write to global memory, so that we know // whether the kernel actually ran. const dim3 block_id = cute::block_id_in_cluster(); if (threadIdx.x == 0 && block_id.x == 0 && block_id.y == 0 && block_id.z == 0) { *scalar_ptr_gpu = 3.4f; } } } // namespace (anonymous) TEST(SM90_ClusterLaunch, Kernel_0) { scalar global_value(-1.0f); const dim3 grid_dims{2, 1, 1}; const dim3 block_dims{1, 1, 1}; const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1}; const int smem_size_in_bytes = 0; cutlass::ClusterLaunchParams params{ grid_dims, block_dims, cluster_dims, smem_size_in_bytes}; void const* kernel_ptr = reinterpret_cast(&kernel_0<2, 1, 1>); cutlass::Status status = cutlass::launch_kernel_on_cluster(params, kernel_ptr); ASSERT_EQ(status, cutlass::Status::kSuccess); cudaError_t result = cudaDeviceSynchronize(); if (result == cudaSuccess) { CUTLASS_TRACE_HOST("Kernel launch succeeded\n"); } else { CUTLASS_TRACE_HOST("Kernel launch FAILED\n"); cudaError_t error = cudaGetLastError(); EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: " << cudaGetErrorString(error) << "\n"; } ASSERT_EQ(global_value.sync_to_host(), 0.1f); } TEST(SM90_ClusterLaunch, Kernel_1) { scalar global_value(-1.0f); const dim3 grid_dims{2, 1, 1}; const dim3 block_dims{1, 1, 1}; const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1}; const int smem_size_in_bytes = 0; cutlass::ClusterLaunchParams params{ grid_dims, block_dims, cluster_dims, smem_size_in_bytes}; constexpr int expected_p0 = 42; void const* kernel_ptr = reinterpret_cast(&kernel_1<2, 1, 1, expected_p0>); const int p0 = expected_p0; cutlass::Status status = cutlass::launch_kernel_on_cluster(params, kernel_ptr, p0); ASSERT_EQ(status, cutlass::Status::kSuccess); cudaError_t result = cudaDeviceSynchronize(); if (result == cudaSuccess) { #if (CUTLASS_DEBUG_TRACE_LEVEL > 1) CUTLASS_TRACE_HOST("Kernel launch succeeded\n"); #endif } else { CUTLASS_TRACE_HOST("Kernel launch FAILED\n"); cudaError_t error = cudaGetLastError(); EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: " << cudaGetErrorString(error) << "\n"; } ASSERT_EQ(global_value.sync_to_host(), 1.2f); } TEST(SM90_ClusterLaunch, Kernel_2) { scalar global_value(-1.0f); const dim3 grid_dims{2, 1, 1}; const dim3 block_dims{1, 1, 1}; const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1}; const int smem_size_in_bytes = 0; cutlass::ClusterLaunchParams params{ grid_dims, block_dims, cluster_dims, smem_size_in_bytes}; constexpr int expected_p0 = 42; constexpr int expected_p2 = 43; int p0 = expected_p0; int* p1 = nullptr; int p2 = expected_p2; void const* kernel_ptr = reinterpret_cast( &kernel_2<2, 1, 1, expected_p0, expected_p2>); cutlass::Status status = cutlass::launch_kernel_on_cluster(params, kernel_ptr, p0, p1, p2); ASSERT_EQ(status, cutlass::Status::kSuccess); cudaError_t result = cudaDeviceSynchronize(); if (result == cudaSuccess) { #if (CUTLASS_DEBUG_TRACE_LEVEL > 1) CUTLASS_TRACE_HOST("Kernel launch succeeded\n"); #endif } else { CUTLASS_TRACE_HOST("Kernel launch FAILED\n"); cudaError_t error = cudaGetLastError(); EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: " << cudaGetErrorString(error) << "\n"; } ASSERT_EQ(global_value.sync_to_host(), 2.3f); } TEST(SM90_ClusterLaunch, Kernel_3) { scalar global_value(-1.0f); const dim3 grid_dims{2, 1, 1}; const dim3 block_dims{1, 1, 1}; const dim3 cluster_dims{grid_dims.x * block_dims.x, 1, 1}; const int smem_size_in_bytes = 0; cutlass::ClusterLaunchParams params{ grid_dims, block_dims, cluster_dims, smem_size_in_bytes}; constexpr int expected_p0 = 42; constexpr int expected_p1_x = 1; constexpr int expected_p1_y = 2; constexpr int expected_p1_z = 3; constexpr int expected_p1_w = 4; constexpr std::uint64_t expected_p2 = 1'000'000'000'000uLL; int p0 = expected_p0; OverloadedOperatorAmpersand p1{expected_p1_x, expected_p1_y, expected_p1_z, expected_p1_w}; // Verify that operator& is overloaded for this type. static_assert(! std::is_same_v); std::uint64_t p2 = expected_p2; void const* kernel_ptr = reinterpret_cast( &kernel_3<2, 1, 1, expected_p0, expected_p1_x, expected_p1_y, expected_p1_z, expected_p1_w, expected_p2>); cutlass::Status status = cutlass::launch_kernel_on_cluster(params, kernel_ptr, p0, p1, p2); ASSERT_EQ(status, cutlass::Status::kSuccess); cudaError_t result = cudaDeviceSynchronize(); if (result == cudaSuccess) { #if (CUTLASS_DEBUG_TRACE_LEVEL > 1) CUTLASS_TRACE_HOST("Kernel launch succeeded\n"); #endif } else { CUTLASS_TRACE_HOST("Kernel launch FAILED\n"); cudaError_t error = cudaGetLastError(); EXPECT_EQ(result, cudaSuccess) << "Error at kernel sync: " << cudaGetErrorString(error) << "\n"; } ASSERT_EQ(global_value.sync_to_host(), 3.4f); } #endif // CUTLASS_SM90_CLUSTER_LAUNCH_ENABLED