/*************************************************************************************************** * Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Testbed for running device-level Conv2Ds with absolute maximum calculation and scaling */ #pragma once #include #include #include #include "conv2d_problems.h" #include "../../common/cutlass_unit_test.h" #include "../../gemm/device/testbed_utils.h" #include "cutlass/matrix_coord.h" #include "cutlass/conv/convolution.h" #include "cutlass/layout/matrix.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/convolution.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_reduce.h" namespace test { namespace conv { namespace device { ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename Conv, template class ActivationFunctor > struct TestbedConv2dWithAbsMax { using ElementAccumulator = typename Conv::ElementAccumulator; using ElementCompute = typename Conv::UnderlyingKernel::Epilogue::OutputOp::ElementCompute; using ElementScalingFactor = typename Conv::EpilogueOutputOp::ElementScalingFactor; using ElementAbsmax = typename Conv::EpilogueOutputOp::ElementAbsmax; static cutlass::conv::Operator const kConvolutionalOperator = Conv::kConvolutionalOperator; static bool const kScaleAux = Conv::EpilogueOutputOp::kIsScalingAndAmaxAuxOutputNeeded; static bool const kScaleOutput = Conv::EpilogueOutputOp::kIsScalingAndAmaxOutputNeeded; bool doScaleA; bool doScaleB; bool doScaleC; /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_C; uint64_t seed; cutlass::HostTensor tensor_A; cutlass::HostTensor tensor_B; cutlass::HostTensor tensor_C; cutlass::HostTensor tensor_Aux; cutlass::HostTensor tensor_D; cutlass::HostTensor tensor_Vector; cutlass::HostTensor tmp_D; cutlass::HostTensor reference_D; cutlass::HostTensor reference_Aux; cutlass::HostTensor scale_A; cutlass::HostTensor scale_B; cutlass::HostTensor scale_C; cutlass::HostTensor scale_D; cutlass::HostTensor scale_Aux; cutlass::HostTensor abs_max_Aux; cutlass::HostTensor abs_max_D; cutlass::HostTensor reference_abs_max_Aux; cutlass::HostTensor reference_abs_max_D; // // Methods // TestbedConv2dWithAbsMax( bool scaleA = true, bool scaleB = true, bool scaleC = true, cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2080 ): doScaleA(scaleA), doScaleB(scaleB), doScaleC(scaleC), init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } /// Helper to initialize scaling factors template bool initialize_scale_factor(cutlass::TensorView view, uint64_t seed, int bits=0) { cutlass::reference::host::TensorFillRandomUniform(view, seed, double(1.), double(0.), bits); return true; } /// Helper to initialize a tensor view template bool initialize_tensor( cutlass::TensorView view, cutlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits::value; int bits_output = cutlass::sizeof_bits::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, 0); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential( view.data(), view.capacity()); } else { EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Initializes data structures void initialize(cutlass::conv::Conv2dProblemSize const &problem_size) { // // Allocate the GEMM workspace // tensor_A.resize(implicit_gemm_tensor_a_extent(kConvolutionalOperator, problem_size)); tensor_B.resize(implicit_gemm_tensor_b_extent(kConvolutionalOperator, problem_size)); tensor_C.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size)); tensor_D.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size)); tensor_Vector.resize({1, 1, 1, implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size).c()}); reference_D.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size), false); tmp_D.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size), false); EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 2019)); EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2018)); EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 2017)); EXPECT_TRUE(initialize_tensor(tensor_Vector.host_view(), init_C, seed + 2020)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. cutlass::Coord<4> origin(0); tensor_A.host_view().at(origin) = typename Conv::ElementA(1); tensor_B.host_view().at(origin) = typename Conv::ElementB(1); tensor_C.host_view().at(origin) = typename Conv::ElementC(1); tensor_Vector.host_view().at(origin) = typename Conv::ElementC(1); cutlass::reference::host::TensorFill(tensor_D.host_view()); cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view()); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D.sync_device(); tensor_Vector.sync_device(); int scale_bits = 2; if (doScaleA) { scale_A.resize({1, 1, 1, 1}); EXPECT_TRUE(initialize_scale_factor(scale_A.host_view(), seed + 2021, scale_bits)); scale_A.sync_device(); } if (doScaleB) { scale_B.resize({1, 1, 1, 1}); EXPECT_TRUE(initialize_scale_factor(scale_B.host_view(), seed + 2022, scale_bits)); scale_B.sync_device(); } if (doScaleC) { scale_C.resize({1, 1, 1, 1}); EXPECT_TRUE(initialize_scale_factor(scale_C.host_view(), seed + 2023, scale_bits)); scale_C.sync_device(); } if (kScaleOutput) { scale_D.resize({1, 1, 1, 1}); EXPECT_TRUE(initialize_scale_factor(scale_D.host_view(), seed + 2024, scale_bits)); scale_D.sync_device(); abs_max_D.resize({1, 1, 1, 1}); cutlass::reference::host::TensorFill(abs_max_D.host_view()); abs_max_D.sync_device(); reference_abs_max_D.resize({1, 1, 1, 1}); } if (kScaleAux) { tensor_Aux.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size)); cutlass::reference::host::TensorFill(tensor_Aux.host_view()); tensor_Aux.sync_device(); scale_Aux.resize({1, 1, 1, 1}); EXPECT_TRUE(initialize_scale_factor(scale_Aux.host_view(), seed + 2025, scale_bits)); scale_Aux.sync_device(); abs_max_Aux.resize({1, 1, 1, 1}); cutlass::reference::host::TensorFill(abs_max_Aux.host_view()); abs_max_Aux.sync_device(); reference_Aux.resize(implicit_gemm_tensor_c_extent(kConvolutionalOperator, problem_size), false); reference_abs_max_Aux.resize({1, 1, 1, 1}); } } /// Compares computed reference with device reference and outputs to a file if incorrect bool compare_reference( cutlass::conv::Conv2dProblemSize const &problem_size, ElementCompute alpha, ElementCompute beta) { tensor_D.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0); bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view()); if (kScaleAux) { tensor_Aux.sync_host(); abs_max_Aux.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_Aux.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(abs_max_Aux.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(reference_Aux.host_view()), 0); passed &= cutlass::reference::host::TensorEquals(reference_Aux.host_view(), tensor_Aux.host_view()); passed &= cutlass::reference::host::TensorEquals(abs_max_Aux.host_view(), reference_abs_max_Aux.host_view()); } if (kScaleOutput) { abs_max_D.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(abs_max_D.host_view()), 0); passed &= cutlass::reference::host::TensorEquals(abs_max_D.host_view(), reference_abs_max_D.host_view()); } EXPECT_TRUE(passed) << " mismatched reference"; if (!passed) { std::ofstream file0("conv_testbed_with_amax_errors_reference.txt"); std::ofstream file1("conv_testbed_with_amax_errors_computed.txt"); std::ofstream file("conv_testbed_with_amax_errors.txt"); file << "problem: " << problem_size << ", alpha: " << alpha << ", beta: " << beta << "\n\n"; file << "A =\n" << tensor_A.host_view() << "\nB =\n" << tensor_B.host_view() << "\nC =\n" << tensor_C.host_view() << "\nVector =\n" << tensor_Vector.host_view() << "\nScaleA = " << scale_A.host_view() << "\nScaleB = " << scale_B.host_view() << "\nScaleC = " << scale_C.host_view() << "\nScaleD = " << scale_D.host_view() << "\nScaleAux = " << scale_Aux.host_view() << std::endl; file0 << "\n\nReference D =\n" << reference_D.host_view() << std::endl; file1 << "\n\nComputed D =\n" << tensor_D.host_view() << std::endl; if (kScaleAux) { file0 << "\n\nReference Aux =\n" << reference_Aux.host_view() << std::endl; file1 << "\n\nComputed Aux =\n" << tensor_Aux.host_view() << std::endl; file0 << "\n\nReference Absmax Aux = " << reference_abs_max_Aux.host_view() << std::endl; file1 << "\n\nComputed Absmax Aux = " << abs_max_Aux.host_view() << std::endl; } if (kScaleOutput) { file0 << "\n\nReference Absmax D = " << reference_abs_max_D.host_view() << std::endl; file1 << "\n\nComputed Absmax D = " << abs_max_D.host_view() << std::endl; } } return passed; } /// Verifies the result is a GEMM bool verify( cutlass::conv::Conv2dProblemSize const &problem_size, ElementCompute alpha, ElementCompute beta) { cutlass::Coord<4> origin(0); ElementCompute scaled_alpha = alpha; if (doScaleA) { scaled_alpha *= scale_A.host_view().at(origin); } if (doScaleB) { scaled_alpha *= scale_B.host_view().at(origin); } ElementCompute scaled_beta = beta; if (doScaleC) { scaled_beta *= scale_C.host_view().at(origin); } // // Verify // cutlass::reference::host::Conv2d< typename Conv::ElementA, typename Conv::LayoutA, typename Conv::ElementB, typename Conv::LayoutB, typename Conv::ElementC, typename Conv::LayoutC, ElementCompute, ElementAccumulator, ElementAccumulator >( kConvolutionalOperator, problem_size, tensor_A.host_ref(), tensor_B.host_ref(), tensor_C.host_ref(), tmp_D.host_ref(), scaled_alpha, scaled_beta ); ElementCompute tmp_abs_max_Aux(0.); ElementCompute tmp_abs_max_D(0.); cutlass::NumericConverter cvt_c_to_compute; cutlass::NumericConverter cvt_accum_to_compute; cutlass::NumericConverter cvt_compute_to_absmax; cutlass::NumericConverter cvt_compute_to_d; cutlass::NumericConverter cvt_compute_to_aux; cutlass::absolute_value_op abs; cutlass::maximum_with_nan_propogation max; ActivationFunctor act; ElementScalingFactor d_scale = kScaleOutput ? scale_D.host_view().at(origin) : ElementScalingFactor(1.); for (int n = 0; n < problem_size.N; ++n) { for (int p = 0; p < problem_size.P; ++p) { for (int q = 0; q < problem_size.Q; ++q) { for (int k = 0; k < problem_size.K; ++k) { ElementCompute intermediate = cvt_accum_to_compute(tmp_D.host_view().at({n, p, q, k})); ElementCompute bias = cvt_c_to_compute(tensor_Vector.host_view().at({0, 0, 0, k})); ElementCompute aux = intermediate + bias; ElementCompute d = act(aux); tmp_abs_max_Aux = max(abs(aux), tmp_abs_max_Aux); tmp_abs_max_D = max(abs(d), tmp_abs_max_D); reference_D.host_view().at({n, p, q, k}) = cvt_compute_to_d(d * d_scale); if (kScaleAux) { reference_Aux.host_view().at({n, p, q, k}) = cvt_compute_to_aux(aux * scale_Aux.host_view().at(origin)); } } } } } if (kScaleAux) { reference_abs_max_Aux.host_view().at(origin) = cvt_compute_to_absmax(tmp_abs_max_Aux); } if (kScaleOutput) { reference_abs_max_D.host_view().at(origin) = cvt_compute_to_absmax(tmp_abs_max_D); } return compare_reference(problem_size, alpha, beta); } /// Returns true if the CUDA device is sufficient to execute the kernel. bool sufficient() const { // // Determine SMEM requirements and waive if not satisfied // size_t smem_size = sizeof(typename Conv::UnderlyingKernel::SharedStorage); cudaDeviceProp properties; int device_idx; cudaError_t result = cudaGetDevice(&device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDevice() API call failed."); } result = cudaGetDeviceProperties(&properties, device_idx); if (result != cudaSuccess) { throw std::runtime_error("cudaGetDeviceProperties() failed"); } if (properties.sharedMemPerBlockOptin < smem_size) { return false; } return true; } /// Executes one test bool run( cutlass::conv::Conv2dProblemSize const &problem_size, ElementCompute alpha = ElementCompute(1), ElementCompute beta = ElementCompute(0)) { // Waive test if insufficient CUDA device if (!sufficient()) { if (CUTLASS_TEST_UNIT_ENABLE_WARNINGS) { std::cerr << "Test waived due to insufficient CUDA device." << std::endl; } return true; } this->initialize(problem_size); // // Initialize the GEMM operator // typename Conv::EpilogueOutputOp::Params::ActivationParams activation_params{alpha, beta}; typename Conv::EpilogueOutputOp::Params epilogue_params{ activation_params, scale_A.device_data(), scale_B.device_data(), scale_C.device_data(), scale_D.device_data(), scale_Aux.device_data(), abs_max_Aux.device_data(), abs_max_D.device_data() }; typename Conv::Arguments arguments{ problem_size, tensor_A.device_ref(), tensor_B.device_ref(), tensor_C.device_ref(), tensor_D.device_ref(), tensor_Aux.device_ref(), epilogue_params, cutlass::conv::SplitKMode::kSerial, tensor_Vector.device_data(), 0 }; Conv conv2d_op; cutlass::Status status = conv2d_op.can_implement(arguments); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); size_t workspace_size = Conv::get_workspace_size(arguments); cutlass::device_memory::allocation workspace(workspace_size); status = conv2d_op.initialize(arguments, workspace.get()); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Run the GEMM // status = conv2d_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); cudaError_t cuda_error = cudaDeviceSynchronize(); EXPECT_TRUE(cuda_error == cudaSuccess) << cudaGetErrorString(cuda_error); // // Verify // bool passed = this->verify(problem_size, alpha, beta); if (!passed) { std::cout << "Failed" << std::endl; } return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template < typename ImplicitGemm, template class ActivationFunctor = cutlass::epilogue::thread::Identity > bool TestAllConv2dWithAbsmax(bool scaleA=true, bool scaleB=true, bool scaleC=true) { const Conv2dProblemVector &conv_test_sizes = Conv2dProblemVector(); const Conv2dProblemVector &conv_blacklist_sizes = Conv2dProblemVector(); // // Testbed object // TestbedConv2dWithAbsMax testbed(scaleA, scaleB, scaleC); // // Get conv problem sizes to run conv operator // TestbedConv2dProblemSizes conv_problems(128/cutlass::sizeof_bits::value); // Vector of conv2d problem sizes to avoid duplicate runs Conv2dProblemVector conv_tested_sizes; Conv2dProblemVector const *problem_vectors[] = { &conv_test_sizes, // run user specified sizes &conv_problems.conv2d_default_sizes, // run default and cudnn bug sizes &conv_problems.conv2d_resnet50_sizes, // run resnet50 sizes #if CUTLASS_CONV_UNIT_TEST_RIGOROUS_SIZE_ENABLED &conv_problems.conv2d_rigorous_sizes, // run large and rigorous sizes if enabled #endif }; bool passed = true; // Sweep conv2d problem sizes (split-k-mode=kSerial, split-k-slice=1, alpha=1.0, beta=0.0) for (Conv2dProblemVector const * problem_vector : problem_vectors) { // Prune all problems with channels that aren't divisible by the number of elements accessed per // load for operands A and B. This is meant to align with the requirements of iterators used for // fprop kernels. ChannelDivisibilitySpecification channel_spec(128 / cutlass::sizeof_bits::value); auto pruned_problem_vector = prune(*problem_vector, channel_spec); // Run conv testbed on default convolution sizes for(auto conv_problem : pruned_problem_vector) { // Skip blacklist and avoid duplicate problem sizes if (std::find(conv_blacklist_sizes.begin(), conv_blacklist_sizes.end(), conv_problem) != conv_blacklist_sizes.end() || std::find(conv_tested_sizes.begin(), conv_tested_sizes.end(), conv_problem) != conv_tested_sizes.end()) { continue; } // // Test // // push back tested problem size to avoid re-running duplicates conv_tested_sizes.push_back(conv_problem); // test mode = xcross passed &= testbed.run(conv_problem); if (!passed) { return false; } // test mode = convolution passed &= testbed.run(conv_problem.reset_mode(cutlass::conv::Mode::kConvolution)); if (!passed) { return false; } } } return passed; } ///////////////////////////////////////////////////////////////////////////////////////////////// } // namespace device } // namespace conv } // namespace test /////////////////////////////////////////////////////////////////////////////////////////////////