/*************************************************************************************************** * Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include "cutlass/matrix_traits.h" #include "tools/util/type_traits.h" namespace perf { /// Dispatcher for cuBLAS kernels template struct CublasGemmDispatch { /// Type used for device-side allocations typedef typename cutlass::TypeTraits::device_type ADeviceType; typedef typename cutlass::TypeTraits::device_type BDeviceType; typedef typename cutlass::TypeTraits::device_type CDeviceType; typedef typename cutlass::TypeTraits::device_type AccumulatorDeviceType; typedef typename cutlass::TypeTraits::device_type ScalarDeviceType; static cublasOperation_t convert(cutlass::MatrixLayout::Kind layout) { switch (layout) { case cutlass::MatrixLayout::kRowMajor: return CUBLAS_OP_T; case cutlass::MatrixLayout::kColumnMajor: return CUBLAS_OP_N; default: break; } return CUBLAS_OP_N; } /// Launches a cuBLAS GEMM kernel cublasStatus_t operator()(cublasHandle_t handle, cutlass::MatrixLayout::Kind layout_a, cutlass::MatrixLayout::Kind layout_b, int m, int n, int k, Scalar alpha, const ADeviceType *A, int lda, const BDeviceType *B, int ldb, Scalar beta, CDeviceType *C, int ldc, cublasGemmAlgo_t algorithm) { return cublasGemmEx(handle, convert(layout_a), convert(layout_b), m, n, k, reinterpret_cast(&alpha), A, cutlass::TypeTraits::cublas_type, lda, B, cutlass::TypeTraits::cublas_type, ldb, reinterpret_cast(&beta), C, cutlass::TypeTraits::cublas_type, ldc, cutlass::TypeTraits::cublas_type, algorithm); } }; /// Dispatcher for batched strided cuBLAS kernels template struct CublasBatchedStridedGemmDispatch { /// Type used for device-side allocations typedef typename cutlass::TypeTraits::device_type ADeviceType; typedef typename cutlass::TypeTraits::device_type BDeviceType; typedef typename cutlass::TypeTraits::device_type CDeviceType; typedef typename cutlass::TypeTraits::device_type AccumulatorDeviceType; typedef typename cutlass::TypeTraits::device_type ScalarDeviceType; static cublasOperation_t convert(cutlass::MatrixLayout::Kind layout) { switch (layout) { case cutlass::MatrixLayout::kRowMajor: return CUBLAS_OP_T; case cutlass::MatrixLayout::kColumnMajor: return CUBLAS_OP_N; default: break; } return CUBLAS_OP_N; } /// Launches a cuBLAS GEMM kernel cublasStatus_t operator()(cublasHandle_t handle, cutlass::MatrixLayout::Kind layout_a, cutlass::MatrixLayout::Kind layout_b, int m, int n, int k, Scalar alpha, const ADeviceType *A, int lda, long long int batch_stride_A, const BDeviceType *B, int ldb, long long int batch_stride_B, Scalar beta, CDeviceType *C, int ldc, long long int batch_stride_C, int batch_count, cublasGemmAlgo_t algorithm) { #if defined(CUDA_VERSION) && CUDA_VERSION >= 9010 return cublasGemmStridedBatchedEx(handle, convert(layout_a), convert(layout_b), m, n, k, reinterpret_cast(&alpha), A, cutlass::TypeTraits::cublas_type, lda, batch_stride_A, B, cutlass::TypeTraits::cublas_type, ldb, batch_stride_B, reinterpret_cast(&beta), C, cutlass::TypeTraits::cublas_type, ldc, batch_stride_C, batch_count, cutlass::TypeTraits::cublas_type, algorithm); #else return CUBLAS_STATUS_NOT_SUPPORTED; #endif } }; } // namespace perf