/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Tests for device-wide GEMV interface */ #include #include #include #include "cutlass/cutlass.h" #include "cutlass/gemm/kernel/gemv.h" #include "cutlass/gemm/device/gemv.h" #include "../../common/cutlass_unit_test.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/distribution.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_norm.h" #include "cutlass/util/reference/host/gemm.h" #include "cutlass/util/reference/host/gemm_complex.h" #include "testbed_utils.h" ///////////////////////////////////////////////////////////////////////////////////////////////// namespace test { namespace gemm { template class TestbedGemv { public: using ElementA = typename Gemv::ElementA; using LayoutA = typename Gemv::LayoutA; using ElementB = typename Gemv::ElementB; using ElementC = typename Gemv::ElementC; using ElementAccumulator = typename Gemv::ElementAccumulator; using ElementCompute = typename Gemv::EpilogueOutputOp::ElementCompute; using LayoutV = cutlass::layout::RowMajor; private: /// Initialization cutlass::Distribution::Kind init_A; cutlass::Distribution::Kind init_B; cutlass::Distribution::Kind init_C; uint64_t seed; cutlass::HostTensor tensor_A; cutlass::HostTensor tensor_B; cutlass::HostTensor tensor_C; cutlass::HostTensor tensor_D; cutlass::HostTensor reference_D; public: // // Methods // TestbedGemv( cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform, cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform, uint64_t seed_ = 2023 ): init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { } /// Helper to initialize a tensor view template bool initialize_tensor( cutlass::TensorView view, cutlass::Distribution::Kind dist_kind, uint64_t seed) { if (dist_kind == cutlass::Distribution::Uniform) { double scope_max, scope_min; int bits_input = cutlass::sizeof_bits::value; int bits_output = cutlass::sizeof_bits::value; if (bits_input == 1) { scope_max = 2; scope_min = 0; } else if (bits_input <= 8) { scope_max = 2; scope_min = -2; } else if (bits_output == 16) { scope_max = 5; scope_min = -5; } else { scope_max = 8; scope_min = -8; } cutlass::reference::host::TensorFillRandomUniform( view, seed, scope_max, scope_min, 0); } else if (dist_kind == cutlass::Distribution::Identity) { cutlass::reference::host::TensorFillIdentity(view); } else if (dist_kind == cutlass::Distribution::Gaussian) { cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5); } else if (dist_kind == cutlass::Distribution::Sequential) { cutlass::reference::host::BlockFillSequential( view.data(), view.capacity()); } else { // TODO: Implement the rest EXPECT_TRUE(false) << "Not implemented"; return false; } return true; } /// Initializes data structures void initialize( cutlass::MatrixCoord problem_size, int32_t batch_count ) { // // Allocate the GEMV workspace // if(std::is_same::value) { tensor_A.resize({problem_size.row(), batch_count * problem_size.column()}); } else { tensor_A.resize({batch_count * problem_size.row(), problem_size.column()}); } tensor_B.resize({batch_count * problem_size.column(), 1}); tensor_C.resize({batch_count * problem_size.row(), 1}); tensor_D.resize({batch_count * problem_size.row(), 1}); reference_D.resize({batch_count * problem_size.row(), 1}, false); EXPECT_TRUE(initialize_tensor(tensor_A.host_view(), init_A, seed + 1)); EXPECT_TRUE(initialize_tensor(tensor_B.host_view(), init_B, seed + 2)); EXPECT_TRUE(initialize_tensor(tensor_C.host_view(), init_C, seed + 3)); // It is possible to randomly initialize to all zeros, so override this with non-zeros // in the upper left corner of each operand. tensor_A.host_view().at({0, 0}) = typename Gemv::ElementA(1); tensor_B.host_view().at({0, 0}) = typename Gemv::ElementB(1); tensor_C.host_view().at({0, 0}) = typename Gemv::ElementC(1); cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view()); tensor_A.sync_device(); tensor_B.sync_device(); tensor_C.sync_device(); tensor_D.sync_device(); } /// Compares computed reference with device reference and outputs to a file if incorrect bool compare_reference( cutlass::MatrixCoord problem_size, ElementCompute alpha, ElementCompute beta) { tensor_D.sync_host(); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_A.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_B.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_C.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(tensor_D.host_view()), 0); EXPECT_GT(cutlass::reference::host::TensorNorm(reference_D.host_view()), 0); bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view()); EXPECT_TRUE(passed) << " mismatched reference"; if (!passed) { std::ofstream file("testbed_universal_errors.txt"); file << "problem: " << problem_size << ", alpha: " << alpha << ", beta: " << beta << "\n\n"; file << "A =\n" << tensor_A.host_view() << "\nB =\n" << tensor_B.host_view() << "\nC =\n" << tensor_C.host_view() << "\n\nReference =\n" << reference_D.host_view() << "\nComputed =\n" << tensor_D.host_view(); } return passed; } /// Verifies the result bool verify( cutlass::MatrixCoord problem_size, int32_t batch_count, int64_t batch_stride_A, int64_t batch_stride_B, int64_t batch_stride_C, int64_t batch_stride_D, ElementCompute alpha, ElementCompute beta) { // // Verify // cutlass::reference::host::GemmComplex< typename Gemv::ElementA, typename Gemv::LayoutA, typename Gemv::ElementB, LayoutV, typename Gemv::ElementC, LayoutV, ElementCompute, ElementAccumulator >( {problem_size.row(), 1, problem_size.column()}, alpha, tensor_A.host_ref(), Gemv::kTransformA, tensor_B.host_ref(), Gemv::kTransformB, beta, tensor_C.host_ref(), reference_D.host_ref(), ElementAccumulator(0), batch_count, batch_stride_A, batch_stride_B, batch_stride_C, batch_stride_D ); return compare_reference(problem_size, alpha, beta); } /// Runs one problem size bool run( cutlass::MatrixCoord problem_size, int32_t batch_count, int64_t batch_stride_A, int64_t batch_stride_B, int64_t batch_stride_C, int64_t batch_stride_D, ElementCompute alpha, ElementCompute beta) { this->initialize(problem_size, batch_count); // // Initialize the GEMV operator // typename Gemv::Arguments arguments{ problem_size, batch_count, {alpha, beta}, tensor_A.device_ref(), tensor_B.device_data(), tensor_C.device_data(), tensor_D.device_data(), batch_stride_A, batch_stride_B, batch_stride_C, batch_stride_D }; Gemv gemm_op; cutlass::Status status = gemm_op.can_implement(arguments); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); size_t workspace_size = Gemv::get_workspace_size(arguments); cutlass::device_memory::allocation workspace(workspace_size); status = gemm_op.initialize(arguments, workspace.get()); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Run the GEMV // status = gemm_op(); EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status); // // Verify // bool passed = this->verify( problem_size, batch_count, batch_stride_A, batch_stride_B, batch_stride_C, batch_stride_D, alpha, beta); return passed; } }; ///////////////////////////////////////////////////////////////////////////////////////////////// template bool TestAllGemv() { using ElementCompute = typename Gemv::EpilogueOutputOp::ElementCompute; int Batch[] = { 1, 520, 1314 }; int M[] = { 1, 5, 16 }; int K[] = { 8, 128, 256 }; double Alpha[] = { 1, 1.25 }; double Beta[] = { 0, 1, 1.25 }; for (int b : Batch) { for (int m : M) { for (int k : K) { for (double alpha : Alpha) { for (double beta : Beta) { TestbedGemv testbed; if (!testbed.run( {m, k}, b, m * k, k, m, m, ElementCompute(alpha), ElementCompute(beta))) { return false; } } } } } } return true; } } // namespace gemm } // namespace test ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM50_Device_Gemv_f16n_f16_f16_simt_f32, RowMajorA) { using ElementInput = cutlass::half_t; using ElementOutput = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementAccumulator = float; int const kElementsPerAccess = 8; using EpilogueOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, 1, ElementAccumulator, ElementAccumulator>; using Gemv = cutlass::gemm::device::Gemv< cutlass::gemm::kernel::Gemv< ElementInput, // Element A LayoutA, // Layout A ElementInput, // Element B ElementOutput, // Element C ElementAccumulator, // Element accumulator EpilogueOp, // Output operator kElementsPerAccess // Element access granularity > >; EXPECT_TRUE(test::gemm::TestAllGemv()); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM50_Device_Gemv_f32n_f32_f32_simt_f32, RowMajorA) { using ElementInput = float; using ElementOutput = float; using LayoutA = cutlass::layout::RowMajor; using ElementAccumulator = float; int const kElementsPerAccess = 4; using EpilogueOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, 1, ElementAccumulator, ElementAccumulator>; using Gemv = cutlass::gemm::device::Gemv< cutlass::gemm::kernel::Gemv< ElementInput, // Element A LayoutA, // Layout A ElementInput, // Element B ElementOutput, // Element C ElementAccumulator, // Element accumulator EpilogueOp, // Output operator kElementsPerAccess // Element access granularity > >; EXPECT_TRUE(test::gemm::TestAllGemv()); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM50_Device_Gemv_f64n_f64_f64_simt_f64, RowMajorA) { using ElementInput = double; using ElementOutput = double; using LayoutA = cutlass::layout::RowMajor; using ElementAccumulator = double; int const kElementsPerAccess = 2; using EpilogueOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, 1, ElementAccumulator, ElementAccumulator>; using Gemv = cutlass::gemm::device::Gemv< cutlass::gemm::kernel::Gemv< ElementInput, // Element A LayoutA, // Layout A ElementInput, // Element B ElementOutput, // Element C ElementAccumulator, // Element accumulator EpilogueOp, // Output operator kElementsPerAccess // Element access granularity > >; EXPECT_TRUE(test::gemm::TestAllGemv()); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM50_Device_Gemv_f16n_f16_f16_simt_f32, ColumnMajorA) { using ElementInput = cutlass::half_t; using ElementOutput = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementAccumulator = float; using EpilogueOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, 1, ElementAccumulator, ElementAccumulator>; using Gemv = cutlass::gemm::device::Gemv< cutlass::gemm::kernel::Gemv< ElementInput, // Element A LayoutA, // Layout A ElementInput, // Element B ElementOutput, // Element C ElementAccumulator, // Element Accumulator EpilogueOp // Output operator > >; EXPECT_TRUE(test::gemm::TestAllGemv()); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM50_Device_Gemv_f32n_f32_f32_simt_f32, ColumnMajorA) { using ElementInput = float; using ElementOutput = float; using LayoutA = cutlass::layout::ColumnMajor; using ElementAccumulator = float; using EpilogueOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, 1, ElementAccumulator, ElementAccumulator>; using Gemv = cutlass::gemm::device::Gemv< cutlass::gemm::kernel::Gemv< ElementInput, // Element A LayoutA, // Layout A ElementInput, // Element B ElementOutput, // Element C ElementAccumulator, // Element Accumulator EpilogueOp // Output operator > >; EXPECT_TRUE(test::gemm::TestAllGemv()); } ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM50_Device_Gemv_f64n_f64_f64_simt_f64, ColumnMajorA) { using ElementInput = double; using ElementOutput = double; using LayoutA = cutlass::layout::ColumnMajor; using ElementAccumulator = double; using EpilogueOp = cutlass::epilogue::thread::LinearCombination< ElementOutput, 1, ElementAccumulator, ElementAccumulator>; using Gemv = cutlass::gemm::device::Gemv< cutlass::gemm::kernel::Gemv< ElementInput, // Element A LayoutA, // Layout A ElementInput, // Element B ElementOutput, // Element C ElementAccumulator, // Element Accumulator EpilogueOp // Output operator > >; EXPECT_TRUE(test::gemm::TestAllGemv()); } /////////////////////////////////////////////////////////////////////////////////////////////////