/*************************************************************************************************** * Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include "../common/cutlass_unit_test.h" #include "cutlass/tensor_ref.h" #include "cutlass/layout/matrix.h" //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(TensorRef, basic_rank2) { int const M = 8; int const N = 16; int matrix_data[M * N] = {0}; cutlass::TensorRef< int, cutlass::IdentityTensorLayout<2> > matrix_ref(matrix_data, cutlass::make_Coord(N, 1)); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { matrix_ref.at(cutlass::make_Coord(m, n)) = m * N + n; } } for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { EXPECT_EQ(matrix_data[m * N + n], int(m * N + n)); } } } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(TensorRef, rank2_column_major) { int const M = 8; int const N = 8; int matrix_data[M * N]; cutlass::TensorRef ref(matrix_data, M); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { ref.at(cutlass::make_Coord(m, n)) = m * N + n; } } for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { EXPECT_EQ(matrix_data[m + n * M], int(m * N + n)); } } } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(TensorRef, rank2_row_major) { int const M = 8; int const N = 16; int matrix_data[M * N] = { 0 }; cutlass::TensorRef ref(matrix_data, N); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { ref.at(cutlass::make_Coord(m, n)) = m * N + n; } } for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { EXPECT_EQ(matrix_data[m * N + n], int(m * N + n)); } } } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(TensorRef, rank2_contiguous_dynamic) { int const M = 8; int const N = 16; typedef cutlass::TensorRef ContiguousTensorRef; cutlass::layout::Matrix layouts[] = { cutlass::layout::Matrix::kColumnMajor, cutlass::layout::Matrix::kRowMajor }; for (int i = 0; i < 2; ++i) { int matrix_data[M * N] = { 0 }; int row_stride; int col_stride; if (layouts[i] == cutlass::layout::Matrix::kColumnMajor) { row_stride = 1; col_stride = M; } else { row_stride = N; col_stride = 1; } // Use helper to determine stride vector from leading dimension ContiguousTensorRef ref( matrix_data, cutlass::layout::ContiguousMatrix::packed(cutlass::make_Coord(M, N), layouts[i])); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { ref.at(cutlass::make_Coord(m, n)) = m * N + n; } } for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { EXPECT_EQ(matrix_data[m * row_stride + n * col_stride], int(m * N + n)); } } } } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(TensorRef, rank2_column_major_interleaved) { int const M = 16; int const N = 16; int const kInterleave = 4; int matrix_data[M * N] = {0}; // Define the Layout for a column-major interleaved matrix format using Layout = cutlass::layout::ColumnMajorInterleaved; // Construct a TensorRef cutlass::TensorRef< int, Layout> ref(matrix_data, Layout::packed(cutlass::make_Coord(M, N))); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { ref.at(cutlass::make_Coord(m, n)) = m + n * M; } } // Verify for (int m = 0; m < M; ++m) { for (int n = 0; n < N; n += kInterleave) { for (int i = 0; i < kInterleave; ++i) { EXPECT_EQ(matrix_data[m * kInterleave + n * M + i], int(m + (n + i) * M)); } } } } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(TensorRef, rank2_row_major_interleaved) { int const M = 16; int const N = 16; int const kInterleave = 4; int matrix_data[M * N] = {0}; // Define the Layout for a row-major interleaved matrix format using Layout = cutlass::layout::RowMajorInterleaved; // Construct a TensorRef cutlass::TensorRef< int, Layout> ref(matrix_data, Layout::packed(cutlass::make_Coord(M, N))); for (int m = 0; m < M; ++m) { for (int n = 0; n < N; ++n) { ref.at(cutlass::make_Coord(m, n)) = m + n * M; } } // Verify for (int m = 0; m < M; m += kInterleave) { for (int n = 0; n < N; ++n) { for (int i = 0; i < kInterleave; ++i) { EXPECT_EQ(matrix_data[m * N + i + n * kInterleave], int((m + i) + n * M)); } } } } ////////////////////////////////////////////////////////////////////////////////////////////////////