/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include #include #include #include #include #include namespace cute { // // Collective Shared-Memory GEMMs // template ::value && BLayout::rank == 2 && is_smem::value && CLayout::rank == 2 && is_smem::value)> CUTE_HOST_DEVICE void cooperative_gemm(ThrMMA const& thr_mma, Alpha const& alpha, Tensor sA, Tensor sB, Beta const& beta, Tensor sC, ALoadTransformOp const& sA_load_op /* transforms A values before used in GEMM */, BLoadTransformOp const& sB_load_op /* transforms B values before used in GEMM */) { CUTE_STATIC_ASSERT_V(size<0>(sA) == size<0>(sC)); // AM == CM CUTE_STATIC_ASSERT_V(size<0>(sB) == size<1>(sC)); // BN == CN CUTE_STATIC_ASSERT_V(size<1>(sA) == size<1>(sB)); // AK == BK using TypeA = typename TA::value_type; using TypeB = typename TB::value_type; using TypeC = typename TC::value_type; static_assert(is_same_v>, TypeA>, "ALoadTransformOp functor must accept and return value of type TA::value_type"); static_assert(is_same_v>, TypeB>, "BLoadTransformOp functor must accept and return value of type TB::value_type"); // Original, static size of the problem auto M = size<0>(sC); auto N = size<1>(sC); auto K = size<1>(sA); // Block size of the compute tile auto BLK_M = tile_size<0>(thr_mma); auto BLK_N = tile_size<1>(thr_mma); auto BLK_K = tile_size<2>(thr_mma); // Compute the "residues" auto m_residue = M - BLK_M * (ceil_div(M, BLK_M) - Int<1>{}); // (0,BLK_M] auto n_residue = N - BLK_N * (ceil_div(N, BLK_N) - Int<1>{}); // (0,BLK_N] auto k_residue = K - BLK_K * (ceil_div(K, BLK_K) ); // (-BLK_K,0] // Shift the origin so k_residue is zeroth tile sA.data() = &sA(0,k_residue); sB.data() = &sB(0,k_residue); #if 0 if (thread0()) { printf("%d in BLK_M (%d)\n", int(m_residue), int(BLK_M)); printf("%d in BLK_N (%d)\n", int(n_residue), int(BLK_N)); printf("%d in BLK_K (%d)\n", int(k_residue), int(BLK_K)); } #endif // // MMA Partitioning // // Round the layout extents up to BLK_X Tensor rounded_sA = sA.compose(make_shape(ceil_div(M, BLK_M) * BLK_M, ceil_div(K, BLK_K) * BLK_K)); Tensor rounded_sB = sB.compose(make_shape(ceil_div(N, BLK_N) * BLK_N, ceil_div(K, BLK_K) * BLK_K)); Tensor rounded_sC = sC.compose(make_shape(ceil_div(M, BLK_M) * BLK_M, ceil_div(N, BLK_N) * BLK_N)); #if 0 if (thread0()) { print("rounded_sA: "); print(rounded_sA); print("\n"); print("rounded_sB: "); print(rounded_sB); print("\n"); print("rounded_sC: "); print(rounded_sC); print("\n"); } #endif // Partition the sA and sB tiles across the threads for the MMA Tensor tCsA = thr_mma.partition_A(rounded_sA); // (MMA,MMA_M,MMA_K) Tensor tCsB = thr_mma.partition_B(rounded_sB); // (MMA,MMA_N,MMA_K) Tensor tCsC = thr_mma.partition_C(rounded_sC); // (MMA,MMA_M,MMA_N) // Create register tensors for the MMA to operate on Tensor tCrA = thr_mma.make_fragment_A(tCsA); // (MMA,MMA_M,MMA_K) Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_N,MMA_K) Tensor tCrC = thr_mma.make_fragment_C(tCsC); // (MMA,MMA_M,MMA_N) #if 0 if (thread0()) { print("tCsA: "); print(tCsA); print("\n"); print("tCsB: "); print(tCsB); print("\n"); print("tCsC: "); print(tCsC); print("\n"); print("tCrA: "); print(tCrA); print("\n"); print("tCrB: "); print(tCrB); print("\n"); print("tCrC: "); print(tCrC); print("\n"); } #endif // // PREDICATION // // Allocate the preds for only the MMA-mode of tCsA and tCsB Tensor tCpA = make_tensor(size<0>(tCsA)); Tensor tCpB = make_tensor(size<0>(tCsB)); // Create coordinate tensors on a single compute block for predication Tensor cA = make_identity_tensor(make_shape(BLK_M, BLK_K)); // (BLK_M,BLK_K) -> (blk_m,blk_k) Tensor cB = make_identity_tensor(make_shape(BLK_N, BLK_K)); // (BLK_M,BLK_K) -> (blk_n,blk_k) // Repeat partitioning with thr_mma Tensor tCcA = thr_mma.partition_A(cA); // (MMA,1,1) -> (blk_m,blk_k) Tensor tCcB = thr_mma.partition_B(cB); // (MMA,1,1) -> (blk_n,blk_k) // Populate the m and n predicates CUTE_UNROLL for (int i = 0; i < size(tCpA); ++i) { tCpA(i) = elem_less(get<0>(tCcA(i)), m_residue); } CUTE_UNROLL for (int i = 0; i < size(tCpB); ++i) { tCpB(i) = elem_less(get<0>(tCcB(i)), n_residue); } #if 0 printf("Thr %d: A(%d,%d):%d B(%d,%d):%d\n", threadIdx.x, int(get<0>(tCcA(0))), int(get<1>(tCcA(0))), int(tCpA(0)), int(get<0>(tCcB(0))), int(get<1>(tCcB(0))), int(tCpB(0))); #endif // // PREFETCH k_block = 0 (with k-predication) // CUTE_UNROLL for (int i = 0; i < size<0>(tCsA); ++i) { // Copy MMA_I if (k_residue == 0 || get<1>(tCcA(i)) >= -k_residue) { // k_block = 0, predicated on k CUTE_UNROLL for (int m = 0; m < size<1>(tCsA); ++m) { // Copy MMA_M, predicated on m tCrA(i,m,0) = (m_residue == BLK_M || m < size<1>(tCsA)-1 || tCpA(i)) ? sA_load_op(tCsA(i,m,0)) : TypeA{}; } } } CUTE_UNROLL for (int i = 0; i < size<0>(tCsB); ++i) { // Copy MMA_I if (k_residue == 0 || get<1>(tCcB(i)) >= -k_residue) { // k_block = 0, predicated on k CUTE_UNROLL for (int n = 0; n < size<1>(tCsB); ++n) { // Copy MMA_N, predicated on n tCrB(i,n,0) = (n_residue == BLK_N || n < size<1>(tCsB)-1 || tCpB(i)) ? sB_load_op(tCsB(i,n,0)) : TypeB{}; } } } // // MAINLOOP // // Clear accumulators clear(tCrC); constexpr int K_BLOCK_MAX = size<2>(tCrA); CUTE_UNROLL for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block) { // static-if load the next k_block. No k-predication required on these loads. if (k_block < K_BLOCK_MAX-1) { // Load the next k_block int k_next = k_block + 1; CUTE_UNROLL for (int m = 0; m < size<1>(tCsA); ++m) { // Copy MMA_M CUTE_UNROLL for (int i = 0; i < size<0>(tCsA); ++i) { // Copy_if MMA_I predicated on m tCrA(i,m,k_next) = (m_residue == BLK_M || m < size<1>(tCsA)-1 || tCpA(i)) ? sA_load_op(tCsA(i,m,k_next)) : TypeA{}; } } CUTE_UNROLL for (int n = 0; n < size<1>(tCsB); ++n) { // Copy MMA_N CUTE_UNROLL for (int i = 0; i < size<0>(tCsB); ++i) { // Copy MMA_I predicated on n tCrB(i,n,k_next) = (n_residue == BLK_N || n < size<1>(tCsB)-1 || tCpB(i)) ? sB_load_op(tCsB(i,n,k_next)) : TypeB{}; } } } // GEMM on k_block in registers gemm(thr_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC); } // // Epilogue // Tensor cC = make_identity_tensor(make_shape(BLK_M, BLK_N)); // (BLK_M,BLK_N) -> (blk_m,blk_n) Tensor tCcC = thr_mma.partition_C(cC); // (MMA, 1, 1) -> (blk_m,blk_n) const bool isBetaZero = (beta == Beta{}); // Custom axpby_if for now CUTE_UNROLL for (int m = 0; m < size<1>(tCsC); ++m) { CUTE_UNROLL for (int n = 0; n < size<2>(tCsC); ++n) { CUTE_UNROLL for (int i = 0; i < size<0>(tCsC); ++i) { if ((m_residue == BLK_M || m < size<1>(tCrC)-1 || get<0>(tCcC(i)) < m_residue) && (n_residue == BLK_N || n < size<2>(tCrC)-1 || get<1>(tCcC(i)) < n_residue)) { tCsC(i,m,n) = isBetaZero ? alpha * static_cast(tCrC(i,m,n)) : alpha * static_cast(tCrC(i,m,n)) + beta * static_cast(tCsC(i,m,n)); } } } } } template ::value && BLayout::rank == 2 && is_smem::value && CLayout::rank == 2 && is_smem::value)> CUTE_HOST_DEVICE void cooperative_gemm(ThrMMA const& thr_mma, Alpha const& alpha, Tensor sA, Tensor sB, Beta const& beta, Tensor sC) { cooperative_gemm(thr_mma, alpha, sA, sB, beta, sC, identity() /* sA_load_op */, identity() /* sB_load_op */); } template ::value && BLayout::rank == 2 && is_smem::value && CLayout::rank == 2 && is_smem::value)> CUTE_HOST_DEVICE void gemm(ThrMMA const& thr_mma, Alpha const& alpha, Tensor sA, Tensor sB, Beta const& beta, Tensor sC, ALoadTransformOp const& sA_load_op /* transforms A values before used in GEMM */, BLoadTransformOp const& sB_load_op /* transforms B values before used in GEMM */) { cooperative_gemm(thr_mma, alpha, sA, sB, beta, sC, sA_load_op, sB_load_op); } template ::value && BLayout::rank == 2 && is_smem::value && CLayout::rank == 2 && is_smem::value)> CUTE_HOST_DEVICE void gemm(ThrMMA const& thr_mma, Alpha const& alpha, Tensor sA, Tensor sB, Beta const& beta, Tensor sC) { cooperative_gemm(thr_mma, alpha, sA, sB, beta, sC, identity() /* sA_load_op */, identity() /* sB_load_op */); } } // end namespace cute