/*************************************************************************************************** * Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Unit tests for CTA-level GEMM specifically for sliced-k kernels (SM_61 and SM_75) */ #include "mma_pipelined_testbed_slicedk.h" ///////////////////////////////////////////////////////////////////////////////////////////////// // igemm_NT DP4A ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM61_igemm_sliced_k, igemm_int8_nt_32x32x128_32x32x4) { using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< cutlass::gemm::GemmShape<32, 32, 128>, // ThreadblockShape, cutlass::gemm::GemmShape<32, 32, 32>, // WarpShape, cutlass::gemm::GemmShape<1, 1, 4>, // InstructionShape, int8_t, // ElementA, cutlass::layout::ColumnMajor, // LayoutA, int8_t, // ElementB, cutlass::layout::RowMajor, // LayoutB, int, // ElementC, cutlass::layout::RowMajor, // LayoutC, cutlass::arch::OpClassSimt, // OpClass 2>; // Stages, cutlass::gemm::GemmCoord problem_size(32, 32, 128); float alpha = 1.f; float beta = 0.0f; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed( problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block, cutlass::Distribution::Uniform, cutlass::Distribution::Uniform); } TEST(SM61_igemm_sliced_k_big, igemm_int8_nt_32x32x128_32x32x4_bigk) { using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< cutlass::gemm::GemmShape<32, 32, 128>, // ThreadblockShape, cutlass::gemm::GemmShape<32, 32, 32>, // WarpShape, cutlass::gemm::GemmShape<1, 1, 4>, // InstructionShape, int8_t, // ElementA, cutlass::layout::ColumnMajor, // LayoutA, int8_t, // ElementB, cutlass::layout::RowMajor, // LayoutB, int, // ElementC, cutlass::layout::RowMajor, // LayoutC, cutlass::arch::OpClassSimt, // OpClass 2>; // Stages, cutlass::gemm::GemmCoord problem_size(32, 32, 1024); float alpha = 1.f; float beta = 0.0f; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed( problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block, cutlass::Distribution::Uniform, cutlass::Distribution::Uniform); } TEST(SM61_igemm_sliced_k, igemm_int8_nt_32x64x128_32x32x4) { using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< cutlass::gemm::GemmShape<32, 64, 128>, // ThreadblockShape, cutlass::gemm::GemmShape<32, 32, 64>, // WarpShape, cutlass::gemm::GemmShape<1, 1, 4>, // InstructionShape, int8_t, // ElementA, cutlass::layout::ColumnMajor, // LayoutA, int8_t, // ElementB, cutlass::layout::RowMajor, // LayoutB, int, // ElementC, cutlass::layout::RowMajor, // LayoutC, cutlass::arch::OpClassSimt, // OpClass 2>; // Stages, cutlass::gemm::GemmCoord problem_size(32, 64, 256); float alpha = 1.f; float beta = 0.0f; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed( problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block, cutlass::Distribution::Uniform, cutlass::Distribution::Uniform); } #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) ///////////////////////////////////////////////////////////////////////////////////////////////// // Tensor Op GEMM for SM_75 ///////////////////////////////////////////////////////////////////////////////////////////////// TEST(SM75_gemm_threadblock_congruous_sliced, tensor_op_64x64x256_tb64x64x64_warp64x32x32_16x8x8) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::ColumnMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::RowMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2, cutlass::arch::OpMultiplyAdd>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } TEST(SM75_gemm_threadblock_crosswise_sliced, tensor_op_64x64x256_tb64x64x64_warp64x32x32_16x8x8) { using ElementA = cutlass::half_t; using LayoutA = cutlass::layout::RowMajor; using ElementB = cutlass::half_t; using LayoutB = cutlass::layout::ColumnMajor; using ElementC = float; using LayoutC = cutlass::layout::ColumnMajor; cutlass::gemm::GemmCoord problem_size(64, 64, 256); using ThreadblockShape = cutlass::gemm::GemmShape<64, 64, 64>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 8>; float alpha = 1.f; float beta = 0.0f; // Define the MmaCore components using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore< ThreadblockShape, WarpShape, InstructionShape, ElementA, LayoutA, ElementB, LayoutB, ElementC, LayoutC, cutlass::arch::OpClassTensorOp, 2, cutlass::arch::OpMultiplyAdd>; dim3 grid(1, 1); dim3 block(32, 4, 1); test::gemm::threadblock::Testbed(problem_size.m(), problem_size.n(), problem_size.k(), alpha, beta) .run(grid, block); } //////////////////////////////////////////////////////////////////////////////// #endif