/*************************************************************************************************** * Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ //////////////////////////////////////////////////////////////////////////////////////////////////// #pragma once #include "cutlass/gemm/device_gemm.h" #include "cutlass/gemm/volta884_gemm_traits.h" #include "tools/test/perf/cutlass_perf_test.h" #include "tools/test/perf/gemm/gemm_profiler.h" #include "tools/test/perf/gemm/cutlass_dispatch.h" #include "tools/test/perf/gemm/gemm_perf_testbed.h" //////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// template struct Volta884GemmDispatchSplitKPI { typedef cutlass::gemm::DeviceGemm Gemm; typedef typename Gemm::Params Params; typedef typename Traits::ScalarC ScalarC; typedef typename Traits::ScalarD ScalarD; typedef typename Traits::Scalar ScalarEpilogue; /// Indicate warp-level GEMM static bool const kThreadMultiplyAdd = false; #if CUTLASS_ENABLE_CUBLAS static bool const kRunCuBLAS = true; #else static bool const kRunCuBLAS = false; #endif static cutlass::MatrixLayout::Kind const kLayoutA = Traits::kLayoutA; static cutlass::MatrixLayout::Kind const kLayoutB = Traits::kLayoutB; // // Data members // /// Params argument Params params; /// splitK PI require workspace typename cutlass::TypeTraits::device_type *workspace_ptr; // // Methods // Volta884GemmDispatchSplitKPI() {} /// Initializes params object Volta884GemmDispatchSplitKPI(int m, int n, int k, ScalarEpilogue alpha, half const* d_a, int lda, half const* d_b, int ldb, ScalarEpilogue beta, ScalarC const* d_c, int ldc, ScalarD* d_d, int ldd) { params.init_problem(m, n, k); size_t workspace_size_in_byte = params.required_workspace_memory_in_byte(); size_t available_device_memory_in_byte = 0; size_t device_memory_in_byte = 0; cudaError_t cudaMemGetInfo_err = cudaMemGetInfo(&available_device_memory_in_byte, &device_memory_in_byte); if (cudaMemGetInfo_err != cudaSuccess) { std::cout << "\ncudaMemGetInfo error: " << cudaGetErrorString(cudaMemGetInfo_err) << "\n"; } if (workspace_size_in_byte > available_device_memory_in_byte) { std::cout << "reqested workspace memory size(" << workspace_size_in_byte << ") is larger than available memory size(" << available_device_memory_in_byte << "). Abort." << std::endl; throw std::runtime_error("reqested workspace memory size is larger than available memory size. Abort."); } cudaError_t workspace_err = cudaMalloc(&workspace_ptr, workspace_size_in_byte); if (workspace_err != cudaSuccess) { std::cout << "\nCUDA workspace malloc error: " << cudaGetErrorString(workspace_err) << "\n"; } params.initialize(alpha, d_a, lda, d_b, ldb, beta, d_c, ldc, d_d, ldd, workspace_ptr, 8 /*volta884 requires leading dim to be mulitiple of 8*/); } Volta884GemmDispatchSplitKPI(int m, int n, int k, ScalarEpilogue alpha, half const* d_a, int lda, long long int batch_stride_A, half const* d_b, int ldb, long long int batch_stride_B, ScalarEpilogue beta, ScalarC const* d_c, int ldc, long long int batch_stride_C, ScalarD* d_d, int ldd, long long int batch_stride_D, int batch_count) { assert(0);//not yet supported } /// Initializes params object Volta884GemmDispatchSplitKPI(Params const& _params) : params(_params) {} /// Launches kernel cudaError_t operator()() { return Gemm::launch(params); } };