/*************************************************************************************************** * Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include #include "cutlass/cutlass.h" #include "tools/test/unit/gemm/gemm_testbed.h" #include "cutlass/gemm/device_gemm.h" #include "cutlass/gemm/device_gemm_traits.h" template static void run_gemm( int m, int n, int k, int lda, int ldb, int ldc, typename test::GemmTestbedTraits::host_type alpha = typename test::GemmTestbedTraits::host_type(1.0f), typename test::GemmTestbedTraits::host_type beta = typename test::GemmTestbedTraits::host_type(0.0f)) { //typedef typename GemmTraits_::KernelClass Gemm; typedef cutlass::gemm::Gemm Gemm; typename Gemm::Params params; test::GemmTestbed< typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarA>::host_type, // AType typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarB>::host_type, // BType typename test::GemmTestbedTraits< typename GemmTraits_::Epilogue::ScalarC>::host_type, // CType typename test::GemmTestbedTraits< typename GemmTraits_::Epilogue::Accumulators::Element>::host_type, // Accumulator typename test::GemmTestbedTraits::host_type // Scalar > testbed(m, n, k, lda, ldb, ldc, test::convert(GemmTraits_::kLayoutA), test::convert(GemmTraits_::kLayoutB), alpha, beta); testbed.initialize(); if (testbed.has_cublas_support()) { EXPECT_TRUE(testbed.verify_host_with_cublas()); EXPECT_TRUE(testbed.verify_reference_with_cublas()); } params.initialize(testbed.M(), testbed.N(), testbed.K(), testbed.alpha, testbed.ptr_A(), testbed.lda(), testbed.ptr_B(), testbed.ldb(), testbed.beta, testbed.ptr_C_initial(), testbed.ldc(), testbed.ptr_computed(), testbed.ldc()); Gemm::launch(params); cudaError_t result = cudaDeviceSynchronize(); ASSERT_EQ(result, cudaSuccess) << "\nCUDA kernel launch error: " << cudaGetErrorString(result) << "\n"; if (testbed.has_cublas_support()) { ASSERT_TRUE(testbed.verify_with_cublas()); } else { ASSERT_TRUE(testbed.verify_with_host()); } } //////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////// template static void run_gemm( int m, int n, int k, typename test::GemmTestbedTraits::host_type alpha = typename test::GemmTestbedTraits::host_type(1.0f), typename test::GemmTestbedTraits::host_type beta = typename test::GemmTestbedTraits::host_type(0.0f)) { typedef cutlass::gemm::Gemm Gemm; //typedef typename GemmTraits_::KernelClass Gemm; typename Gemm::Params params; typedef test::GemmTestbed< typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarA>::host_type, // AType typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarB>::host_type, // BType typename test::GemmTestbedTraits< typename GemmTraits_::Epilogue::ScalarC>::host_type, // CType typename test::GemmTestbedTraits< typename GemmTraits_::Epilogue::Accumulators::Element>::host_type, // Accumulator typename test::GemmTestbedTraits::host_type // Scalar > GemmTestbed; GemmTestbed testbed(m, n, k, test::convert(GemmTraits_::kLayoutA), test::convert(GemmTraits_::kLayoutB), alpha, beta); testbed.initialize(); if (testbed.has_cublas_support()) { EXPECT_TRUE(testbed.verify_host_with_cublas()); EXPECT_TRUE(testbed.verify_reference_with_cublas()); } params.initialize(testbed.M(), testbed.N(), testbed.K(), testbed.alpha, testbed.ptr_A(), testbed.lda(), testbed.ptr_B(), testbed.ldb(), testbed.beta, testbed.ptr_C_initial(), testbed.ldc(), testbed.ptr_computed(), testbed.ldc()); Gemm::launch(params); cudaError_t result = cudaDeviceSynchronize(); ASSERT_EQ(result, cudaSuccess) << "\nCUDA kernel launch error: " << cudaGetErrorString(result) << "\n"; if (testbed.has_cublas_support()) { ASSERT_TRUE(testbed.verify_with_cublas()); } else { ASSERT_TRUE(testbed.verify_with_host()); } } //////////////////////////////////////////////////////////////////////////////////////////////////// template static void run_batched_strided_gemm( int m, int n, int k, int batch_count, typename test::GemmTestbedTraits::host_type alpha = typename test::GemmTestbedTraits::host_type(1.0f), typename test::GemmTestbedTraits::host_type beta = typename test::GemmTestbedTraits::host_type(0.0f)) { typedef cutlass::gemm::Gemm Gemm; //typedef typename GemmTraits_::KernelClass Gemm; typename Gemm::Params params; test::GemmTestbed< typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarA>::host_type, // AType typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarB>::host_type, // BType typename test::GemmTestbedTraits< typename GemmTraits_::Epilogue::ScalarC>::host_type, // CType typename test::GemmTestbedTraits< typename GemmTraits_::Epilogue::Accumulators::Element>::host_type, // Accumulator typename test::GemmTestbedTraits::host_type // Scalar > testbed(m, n, k, batch_count, test::convert(GemmTraits_::kLayoutA), test::convert(GemmTraits_::kLayoutB), alpha, beta); testbed.initialize(); // host support is not implemented for strided batched gemm // if (testbed.has_cublas_support()) { // EXPECT_TRUE(testbed.verify_host_with_cublas()); //} params.initialize(testbed.M(), testbed.N(), testbed.K(), testbed.alpha, testbed.ptr_A(), testbed.lda(), testbed.get_batch_stride_A(), testbed.ptr_B(), testbed.ldb(), testbed.get_batch_stride_B(), testbed.beta, testbed.ptr_C_initial(), testbed.ldc(), testbed.get_batch_stride_C(), testbed.ptr_computed(), testbed.ldc(), testbed.get_batch_stride_C(), testbed.get_batch_count()); Gemm::launch(params); cudaError_t result = cudaDeviceSynchronize(); ASSERT_EQ(result, cudaSuccess) << "\nCUDA kernel launch error: " << cudaGetErrorString(result) << "\n"; if (testbed.has_cublas_support()) { ASSERT_TRUE(testbed.verify_with_cublas()); } else { // ASSERT_TRUE(testbed.verify_with_host()); ASSERT_TRUE(false) << "host support is not implemented for strided batched gemm" << std::endl; } } //////////////////////////////////////////////////////////////////////////////////////////////////// template static void run_splitK_gemm(int m, int n, int k, int partitionK_multiple = 1, /*requires each partition to be mulitple of partitionK_multiple*/ typename test::GemmTestbedTraits::host_type alpha = typename test::GemmTestbedTraits::host_type(1.0f), typename test::GemmTestbedTraits::host_type beta = typename test::GemmTestbedTraits::host_type(0.0f), bool use_host_reference = false){ test::GemmTestbed< typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarA>::host_type, // AType typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarB>::host_type, // BType typename test::GemmTestbedTraits< typename ReductionTraits_::ScalarC>::host_type, // CType typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarD>::host_type, // Workspace Accumulator typename test::GemmTestbedTraits::host_type // Scalar > testbed(m, n, k, test::convert(GemmTraits_::kLayoutA), test::convert(GemmTraits_::kLayoutB), alpha, beta); testbed.initialize(); // create a device gemm typedef cutlass::gemm::SplitkPIGemmTraits deviceGemmTraits; //typedef typename deviceGemmTraits::KernelClass deviceGemm; typedef typename cutlass::gemm::DeviceGemm deviceGemm; typename deviceGemm::Params deviceGemmParams(testbed.M(), testbed.N(), testbed.K()); // query if workspace is needed size_t workspace_size = deviceGemmParams.required_workspace_memory_in_byte(); typename test::GemmTestbedTraits::device_type *workspace_ptr = 0; if (workspace_size != 0) { cudaError_t workspace_err = cudaMalloc(&workspace_ptr, workspace_size); ASSERT_EQ(workspace_err, cudaSuccess) << "\nCUDA workspace malloc error: " << cudaGetErrorString(workspace_err) << "\n"; } deviceGemmParams.initialize(testbed.alpha, testbed.ptr_A(), testbed.lda(), testbed.ptr_B(), testbed.ldb(), testbed.beta, testbed.ptr_C_initial(), testbed.ldc(), testbed.ptr_computed(), testbed.ldc(), workspace_ptr, partitionK_multiple); deviceGemm::launch(deviceGemmParams); cudaError_t result = cudaDeviceSynchronize(); ASSERT_EQ(result, cudaSuccess) << "\nCUDA kernel launch error: " << cudaGetErrorString(result) << "\n"; if (workspace_size != 0) { cudaError_t workspace_err = cudaFree(workspace_ptr); ASSERT_EQ(workspace_err, cudaSuccess) << "\nCUDA workspace free error: " << cudaGetErrorString(workspace_err) << "\n"; } if (use_host_reference == true || testbed.has_cublas_support() == false) { ASSERT_TRUE(testbed.verify_with_host()); } else { ASSERT_TRUE(testbed.verify_with_cublas()); } } //////////////////////////////////////////////////////////////////////////////////////////////////// template static void run_partitioned_k_gemm( int m, int n, int k, int partitionK_count, int partitionK_multiple = 1, //requires each partition to be multiples of partitionK_multiple typename test::GemmTestbedTraits::host_type alpha = typename test::GemmTestbedTraits::host_type(1.0f), typename test::GemmTestbedTraits::host_type beta = typename test::GemmTestbedTraits::host_type(0.0f)) { typedef cutlass::gemm::Gemm Gemm; //typedef typename GemmTraits_::KernelClass Gemm; typename Gemm::Params params; test::GemmTestbed< typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarA>::host_type, // AType typename test::GemmTestbedTraits< typename GemmTraits_::GemmConfig::ScalarB>::host_type, // BType typename test::GemmTestbedTraits< typename GemmTraits_::Epilogue::ScalarC>::host_type, // CType typename test::GemmTestbedTraits< typename GemmTraits_::Epilogue::Accumulators::Element>::host_type, // Accumulator typename test::GemmTestbedTraits::host_type // Scalar > testbed(m, n, std::make_pair(k, partitionK_count), partitionK_multiple, test::convert(GemmTraits_::kLayoutA), test::convert(GemmTraits_::kLayoutB), alpha, beta); testbed.initialize(); // host support is not implemented for strided batched gemm // if (testbed.has_cublas_support()) { // EXPECT_TRUE(testbed.verify_host_with_cublas()); //} params.initialize(testbed.M(), testbed.N(), testbed.K(), testbed.alpha, testbed.ptr_A(), testbed.lda(), testbed.ptr_B(), testbed.ldb(), testbed.beta, testbed.ptr_C_initial(), testbed.ldc(), testbed.ptr_computed(), testbed.ldc(), partitionK_count, partitionK_multiple); Gemm::launch(params); cudaError_t result = cudaDeviceSynchronize(); ASSERT_EQ(result, cudaSuccess) << "\nCUDA kernel launch error: " << cudaGetErrorString(result) << "\n"; if (testbed.has_cublas_support()) { ASSERT_TRUE(testbed.verify_with_cublas()); } else { // ASSERT_TRUE(testbed.verify_with_host()); ASSERT_TRUE(false) << "host support is not implemented for strided batched gemm" << std::endl; } }