/*************************************************************************************************** * Copyright (c) 2017-2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are permitted * provided that the following conditions are met: * * Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used * to endorse or promote products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #include "cutlass_unit_test.h" #include "cutlass/shape.h" #include "tools/util/host_tensor.h" #include "cutlass/reduction/batched_reduction.h" #include "cutlass/reduction/batched_reduction_traits.h" #include "tools/test/unit/reduction/test_batched_reduction.h" #include "tools/test/unit/reduction/batched_reduction_testbed.h" //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Batched_reduction_float, batched_reduction_128x256x16) { /* The output matrix is 128x256 The input matrix is 128x256x16 The reduction will be applied at the third dim of input matrix */ const int m = 128; const int n = 256; const int lda = 128; const int ldc = 128; const int ldd = 128; const int reduction_size = 16; typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits_16; test_batched_reduction(m, n, lda, ldc, ldd); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Batched_reduction_double, batched_reduction_128x256x16) { /* D = alpha * Reduction(A) + beta * C The output matrix D is 128x256 The input matrix A is 128x256x16 The input matrix C is 128x256 The reduction will be applied at the third dim of input matrix */ const int m = 128; const int n = 256; const int lda = 128; const int ldc = 128; const int ldd = 128; const int reduction_size = 16; typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits_16; test_batched_reduction(m, n, lda, ldc, ldd); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Batched_reduction_half, batched_reduction_128x256x16) { /* The output matrix is 128x256 The input matrix is 128x256x16 The reduction will be applied at the third dim of input matrix */ const int m = 128; const int n = 256; const int lda = 128; const int ldc = 128; const int ldd = 128; const int reduction_size = 16; typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits_16; test_batched_reduction(m, n, lda, ldc, ldd); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Batched_reduction_float, batched_reduction_128x64x80) { /* The output matrix is 128x64 The input matrix is 128x64x80 The reduction will be applied at the third dim of input matrix */ const int m = 128; const int n = 64; const int lda = 128; const int ldc = 128; const int ldd = 128; const int reduction_size = 80; typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits_80; test_batched_reduction(m, n, lda, ldc, ldd); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Batched_reduction_double, batched_reduction_128x64x80) { /* The output matrix is 128x64 The input matrix is 128x64x80 The reduction will be applied at the third dim of input matrix */ const int m = 128; const int n = 64; const int lda = 128; const int ldc = 128; const int ldd = 128; const int reduction_size = 80; typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits_80; test_batched_reduction(m, n, lda, ldc, ldd); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Batched_reduction_half, batched_reduction_128x64x80) { /* The output matrix is 128x64 The input matrix is 128x64x80 The reduction will be applied at the third dim of input matrix */ const int m = 128; const int n = 64; const int lda = 128; const int ldc = 128; const int ldd = 128; const int reduction_size = 80; typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 2> > BatchedReductionTraits_80; test_batched_reduction(m, n, lda, ldc, ldd); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Batched_reduction_float_threadShape1, batched_reduction_128x256x90) { /* The output matrix is 128x256 The input matrix is 128x256x90 The reduction will be applied at the third dim of input matrix */ const int m = 128; const int n = 256; const int lda = 128; const int ldc = 128; const int ldd = 128; const int reduction_size = 90; typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 1> > BatchedReductionTraits_16; test_batched_reduction(m, n, lda, ldc, ldd); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Batched_reduction_double_threadShape1, batched_reduction_128x256x90) { /* The output matrix is 128x256 The input matrix is 128x256x90 The reduction will be applied at the third dim of input matrix */ const int m = 128; const int n = 256; const int lda = 128; const int ldc = 128; const int ldd = 128; const int reduction_size = 90; typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 1> > BatchedReductionTraits_16; test_batched_reduction(m, n, lda, ldc, ldd); } //////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Batched_reduction_half_threadShape1, batched_reduction_128x256x90) { /* The output matrix is 128x256 The input matrix is 128x256x90 The reduction will be applied at the third dim of input matrix */ const int m = 128; const int n = 256; const int lda = 128; const int ldc = 128; const int ldd = 128; const int reduction_size = 90; typedef cutlass::reduction::BatchedReductionTraits, cutlass::Shape<1, 1, 64>, cutlass::Shape<1, 1, 1> > BatchedReductionTraits_16; test_batched_reduction(m, n, lda, ldc, ldd); }