cutlass/include/cute/numeric/integral_ratio.hpp
ANIKET SHIVAM 90d3b0fb18
CUTLASS 3.2.1 (#1113)
* Updates for 3.2.1 release.

* Minor fix in gemm op profiler for raster order.

* Add scheduler mapping for raster order in the kernels.
2023-09-26 17:24:26 -04:00

176 lines
5.3 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include <cute/config.hpp>
#include <cute/util/type_traits.hpp>
#include <cute/numeric/math.hpp>
#include <cute/numeric/integral_constant.hpp>
namespace cute
{
/** Compile-time rational arithmetic type.
* Like cute::C for std::integral_constant, cute::R for std::ratio has a short name
* for error messages and compile times.
* The static data members @a num and @a den represent the reduced numerator and denominator
* of the rational value. Thus, two cute::R types with different @a n or @a d are distinct types
* even if they represent the same rational value. A cute::R exposes the reduced canonical type
* via its type member. That is, cute::R<3,6>::type is cute::R<1,2> and cute::R<6,3>::type is cute::C<2>
*/
template <auto n, auto d>
class R {
static_assert(d != 0);
static constexpr auto an = abs(n);
static constexpr auto ad = abs(d);
static constexpr auto g = gcd(an, ad);
public:
static constexpr auto num = signum(n) * signum(d) * an / g;
static constexpr auto den = ad / g;
// RI: den >= 1 && gcd(abs(num),den) == 1
using type = typename conditional<num == 0 || den == 1, C<num>, R<num,den>>::type;
};
template <auto a, auto b>
CUTE_HOST_DEVICE constexpr
typename R<a,b>::type
ratio(C<a>, C<b>) {
return {};
}
template <auto a, auto b, auto x, auto y>
CUTE_HOST_DEVICE constexpr
typename R<a*x,b*y>::type
operator*(R<a,b>, R<x,y>) {
return {};
}
template <auto a, auto b, auto c>
CUTE_HOST_DEVICE constexpr
typename R<a*c,b>::type
operator*(R<a,b>, C<c>) {
return {};
}
template <auto c, auto a, auto b>
CUTE_HOST_DEVICE constexpr
typename R<a*c,b>::type
operator*(C<c>, R<a,b>) {
return {};
}
// Product with dynamic type needs to produce an integer...
template <class C, auto a, auto b,
__CUTE_REQUIRES(cute::is_std_integral<C>::value)>
CUTE_HOST_DEVICE constexpr
auto
operator*(C const& c, R<a,b>) {
return c * R<a,b>::num / R<a,b>::den;
}
// Product with dynamic type needs to produce an integer...
template <auto a, auto b, class C,
__CUTE_REQUIRES(cute::is_std_integral<C>::value)>
CUTE_HOST_DEVICE constexpr
auto
operator*(R<a,b>, C const& c) {
return c * R<a,b>::num / R<a,b>::den;
}
template <auto a, auto b, auto x, auto y>
CUTE_HOST_DEVICE constexpr
typename R<a*y+b*x, b*y>::type
operator+(R<a,b>, R<x,y>) {
return {};
}
template <auto a, auto b, auto c>
CUTE_HOST_DEVICE constexpr
typename R<a+c*b,b>::type
operator+(R<a,b>, C<c>) {
return {};
}
template <auto c, auto a, auto b>
CUTE_HOST_DEVICE constexpr
typename R<a+c*b,b>::type
operator+(C<c>, R<a,b>) {
return {};
}
template <auto a, auto b, auto x, auto y>
CUTE_HOST_DEVICE constexpr
bool_constant<R<a,b>::num == R<x,y>::num && R<a,b>::den == R<x,y>::den>
operator==(R<a,b>, R<x,y>) {
return {};
}
template <auto a, auto b, auto c>
CUTE_HOST_DEVICE constexpr
bool_constant<R<a,b>::num == c && R<a,b>::den == 1>
operator==(R<a,b>, C<c>) {
return {};
}
template <auto c, auto a, auto b>
CUTE_HOST_DEVICE constexpr
bool_constant<R<a,b>::num == c && R<a,b>::den == 1>
operator==(C<c>, R<a,b>) {
return {};
}
template <auto a, auto b>
CUTE_HOST_DEVICE constexpr
typename R<abs(a),abs(b)>::type
abs(R<a,b>) {
return {};
}
//
// Display utilities
//
template <auto a, auto b>
CUTE_HOST_DEVICE void print(R<a,b>) {
print(C<a>{}); print("/"); print(C<b>{});
}
#if !defined(__CUDACC_RTC__)
template <auto a, auto b>
CUTE_HOST std::ostream& operator<<(std::ostream& os, R<a,b>) {
return os << "_" << C<a>{} << "/" << C<b>{};
}
#endif
} // end namespace cute