cutlass/tools/test/unit/util/tensor_elementwise.cu
2018-09-18 16:58:03 -07:00

325 lines
9.8 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief
These tests initialize host- and device-side tensors according to several random distributions.
*/
#include "cutlass_unit_test.h"
#include "cutlass/matrix_traits.h"
#include "tools/util/tensor_view_io.h"
#include "tools/util/host_tensor.h"
#include "tools/util/host_matrix.h"
#include "tools/util/reference/device/tensor_foreach.h"
#include "tools/util/reference/device/tensor_elementwise.h"
#include "tools/util/reference/host/tensor_foreach.h"
#include "tools/util/reference/host/tensor_elementwise.h"
///////////////////////////////////////////////////////////////////////////////////////////////////
#define ENABLE_OUTPUT 0 // Supress output by default.
///////////////////////////////////////////////////////////////////////////////////////////////////
TEST(TensorInitialize, uniform_device) {
// Define the problem size
int const M = 517;
int const N = 117;
// Define HostMatrix type
typedef cutlass::HostMatrix<float> HostMatrix;
// Construct the host matrix
HostMatrix source(cutlass::MatrixCoord(M, N), cutlass::MatrixLayout::kRowMajor);
source.fill(0);
// Initialize the source matrix with a uniform distribution
cutlass::Distribution dist;
dist.set_uniform(0, 128, -1);
// RNG seed is hard-coded for determinism in the test.
unsigned seed = 2080;
cutlass::reference::device::TensorInitialize(source.device_view(), seed, dist);
source.sync_host();
if (ENABLE_OUTPUT) {
std::ofstream result("TensorInitialize_uniform_device.csv");
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
result << source.at(cutlass::make_Coord(i, j)) << "\n";
}
}
}
}
TEST(TensorInitialize, uniform_host) {
// Define the problem size
int const M = 517;
int const N = 117;
bool const kDeviceBacked = false;
// Define HostMatrix type
typedef cutlass::HostMatrix<float> HostMatrix;
// Construct the host matrix
HostMatrix source(cutlass::MatrixCoord(M, N), cutlass::MatrixLayout::kRowMajor, kDeviceBacked);
source.fill(0);
// Initialize the source matrix with a uniform distribution
cutlass::Distribution dist;
dist.set_uniform(0, 128, -1);
// RNG seed is hard-coded for determinism in the test.
unsigned seed = 2080;
cutlass::reference::host::TensorInitialize(source.host_view(), seed, dist);
if (ENABLE_OUTPUT) {
std::ofstream result("TensorInitialize_uniform_host.csv");
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
result << source.at(cutlass::make_Coord(i, j)) << "\n";
}
}
}
}
TEST(TensorInitialize, gaussian_device) {
// Define the problem size
int const M = 517;
int const N = 117;
// Define HostMatrix type
typedef cutlass::HostMatrix<float> HostMatrix;
// Construct the host matrix
HostMatrix source(cutlass::MatrixCoord(M, N), cutlass::MatrixLayout::kRowMajor);
source.fill(0);
// Initialize the source matrix with a uniform distribution
cutlass::Distribution dist;
dist.set_gaussian(1, 2, -1);
// RNG seed is hard-coded for determinism in the test.
unsigned seed = 2080;
cutlass::reference::device::TensorInitialize(source.device_view(), seed, dist);
source.sync_host();
if (ENABLE_OUTPUT) {
std::ofstream result("TensorInitialize_gaussian_device.csv");
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
result << source.at(cutlass::make_Coord(i, j)) << "\n";
}
}
}
}
TEST(TensorInitialize, gaussian_host) {
// Define the problem size
int const M = 517;
int const N = 117;
bool const kDeviceBacked = false;
// Define HostMatrix type
typedef cutlass::HostMatrix<float> HostMatrix;
// Construct the host matrix
HostMatrix source(cutlass::MatrixCoord(M, N), cutlass::MatrixLayout::kRowMajor, kDeviceBacked);
source.fill(0);
// Initialize the source matrix with a uniform distribution
cutlass::Distribution dist;
dist.set_gaussian(1, 2, -1);
// RNG seed is hard-coded for determinism in the test.
unsigned seed = 2080;
cutlass::reference::host::TensorInitialize(source.host_view(), seed, dist);
if (ENABLE_OUTPUT) {
std::ofstream result("TensorInitialize_gaussian_host.csv");
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
result << source.at(cutlass::make_Coord(i, j)) << "\n";
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
//
// Interleaved matrix layouts
//
///////////////////////////////////////////////////////////////////////////////////////////////////
TEST(TensorInitialize, interleaved_gaussian_device) {
// Define the problem size
int const M = 512;
int const N = 128;
// Define a mapping function for column-major interleaved layout
int const kInterleave = 4;
typedef cutlass::MatrixLayout::ColumnMajorInterleaved<kInterleave> TensorRefMapFunc;
// Construct a rank=2 host tensor of size M-by-N
cutlass::HostTensor<
float,
2,
TensorRefMapFunc > source(TensorRefMapFunc::stride(M), cutlass::make_Coord(M, N));
source.fill(0);
// Initialize the source matrix with a uniform distribution
cutlass::Distribution dist;
dist.set_gaussian(1, 2, -1);
// RNG seed is hard-coded for determinism in the test.
unsigned seed = 2080;
cutlass::reference::device::TensorInitialize(source.device_view(), seed, dist);
source.sync_host();
if (ENABLE_OUTPUT) {
std::ofstream result("TensorInitialize_interleaved_gaussian_device.csv");
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
result << source.at(cutlass::make_Coord(i, j)) << "\n";
}
}
}
}
TEST(TensorInitialize, interleaved_gaussian_host) {
// Define the problem size
int const M = 512;
int const N = 128;
bool const kDeviceBacked = false;
// Define a mapping function for column-major interleaved layout
int const kInterleave = 4;
typedef cutlass::MatrixLayout::ColumnMajorInterleaved<kInterleave> TensorRefMapFunc;
// Construct a rank=2 host tensor of size M-by-N
cutlass::HostTensor<
float,
2,
TensorRefMapFunc > source(TensorRefMapFunc::stride(M), cutlass::make_Coord(M, N), kDeviceBacked);
// Construct the host matrix
source.fill(0);
// Initialize the source matrix with a uniform distribution
cutlass::Distribution dist;
dist.set_gaussian(1, 2, -1);
// RNG seed is hard-coded for determinism in the test.
unsigned seed = 2080;
cutlass::reference::host::TensorInitialize(source.host_view(), seed, dist);
if (ENABLE_OUTPUT) {
std::ofstream result("TensorInitialize_interleaved_gaussian_host.csv");
for (int i = 0; i < M; ++i) {
for (int j = 0; j < N; ++j) {
result << source.at(cutlass::make_Coord(i, j)) << "\n";
}
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
//
// Comparison operator
//
///////////////////////////////////////////////////////////////////////////////////////////////////
TEST(TensorEquals, interleaved_device) {
// Define the problem size
int const M = 512;
int const N = 128;
// Define a mapping function for column-major interleaved layout
int const kInterleave = 4;
typedef cutlass::MatrixLayout::ColumnMajorInterleaved<kInterleave> TensorRefMapFunc;
// Construct two rank=2 host tensor of size M-by-N
cutlass::HostTensor<
float,
2,
TensorRefMapFunc > left(TensorRefMapFunc::stride(M), cutlass::make_Coord(M, N));
cutlass::HostTensor<
float,
2,
TensorRefMapFunc > right(TensorRefMapFunc::stride(M), cutlass::make_Coord(M, N));
// Initialize
left.fill_sequential();
right.fill_sequential();
// Assert equality
EXPECT_TRUE(cutlass::reference::device::TensorEquals(left.device_view(), right.device_view()));
// Overwrite one with an unexpected element
left.at(cutlass::make_Coord(24, 17)) = -1;
left.sync_device();
// Assert inequality
EXPECT_FALSE(cutlass::reference::device::TensorEquals(left.device_view(), right.device_view()));
}
TEST(TensorEquals, interleaved_host) {
}
///////////////////////////////////////////////////////////////////////////////////////////////////