cutlass/tools/profiler/src/conv2d_operation_profiler.h
Manish Gupta 1ac4559d12
Cutlass 2.6 Update 1 (#301)
* cutlass 2.6 update

* remove debug prints
2021-07-27 17:58:30 -07:00

485 lines
18 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief Defines profiling functionality for convolution
*/
#pragma once
#include <vector>
#include <string>
#include <memory>
#include <algorithm>
#include <unordered_map>
// CUTLASS Library includes
#include "cutlass/library/library.h"
#include "cutlass/library/util.h"
#include "cutlass/library/handle.h"
#include "cutlass/library/manifest.h"
#include "cutlass/library/singleton.h"
// Profiler includes
#include "options.h"
#include "device_context.h"
#include "operation_profiler.h"
#include "performance_result.h"
#include "problem_space.h"
#include "reduction_operation_profiler.h"
#if CUTLASS_ENABLE_CUDNN
#include "cudnn_helpers.h"
#endif //#if CUTLASS_ENABLE_CUDNN
#include "debug.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace profiler {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Abstract base class for each math function
class Conv2dOperationProfiler : public OperationProfiler {
public:
/// Problem structure obtained from problem space
struct Conv2dProblem {
int64_t n, h, w, c, p, q, k, r, s;
int64_t pad_h, pad_w;
int64_t stride_h, stride_w;
int64_t dilation_h, dilation_w;
std::vector<uint8_t> alpha;
std::vector<uint8_t> beta;
library::SplitKMode split_k_mode;
int64_t split_k_slices;
library::ConvModeID conv_mode;
library::Provider eq_gemm_provider;
// convolution with parallel interleaved reduction
// convolution epilogue (alpha, beta) = (1.0, 0.0)
// reduction epilogue (alpha, beta) = (Conv2dProblem::alpha, Conv2dProblem::beta)
std::vector<uint8_t> alpha_one;
std::vector<uint8_t> beta_zero;
//
// Methods
//
/// Total number of bytes loaded
int64_t bytes(library::ConvDescription const &operation_desc) const;
/// Total number of flops computed
int64_t flops(library::ConvDescription const &operation_desc) const;
void set_default_output_size() {
p = ((h + pad_h - r * dilation_h) / stride_h) + 1;
q = ((w + pad_w - s * dilation_w) / stride_w) + 1;
}
// Returns equivalent gemm problem size for convolution
cutlass::gemm::GemmCoord eq_gemm_size(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
case library::ConvKind::kFprop: return cutlass::gemm::GemmCoord(int(n * p * q), int(k), int(r * s * c));
case library::ConvKind::kDgrad: return cutlass::gemm::GemmCoord(int(n * h * w), int(c), int(k * r * s));
case library::ConvKind::kWgrad: return cutlass::gemm::GemmCoord(int(k), int(r * s * c), int(n * p * q));
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
// Returns extent for tensor A
std::vector<int> extent_a(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
case library::ConvKind::kFprop: return {int(n), int(h), int(w), int(c)};
case library::ConvKind::kDgrad: return {int(n), int(p), int(q), int(k)};
case library::ConvKind::kWgrad: return {int(n), int(p), int(q), int(k)};
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
// Returns extent for tensor B
std::vector<int> extent_b(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
case library::ConvKind::kFprop: return {int(k), int(r), int(s), int(c)};
case library::ConvKind::kDgrad: return {int(k), int(r), int(s), int(c)};
case library::ConvKind::kWgrad: return {int(n), int(h), int(w), int(c)};
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
// Returns extent for tensor C
std::vector<int> extent_c(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
case library::ConvKind::kFprop: return {int(n), int(p), int(q), int(k)};
case library::ConvKind::kDgrad: return {int(n), int(h), int(w), int(c)};
case library::ConvKind::kWgrad: return {int(k), int(r), int(s), int(c)};
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
// Returns layout for equivalent gemm matrix A
library::LayoutTypeID eq_gemm_layout_a(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
case library::ConvKind::kFprop: return library::LayoutTypeID::kRowMajor; // TN Gemm
case library::ConvKind::kDgrad: return library::LayoutTypeID::kRowMajor; // TT Gemm
case library::ConvKind::kWgrad: return library::LayoutTypeID::kColumnMajor; // NT Gemm
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
// Returns layout for equivalent gemm matrix B
library::LayoutTypeID eq_gemm_layout_b(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
case library::ConvKind::kFprop: return library::LayoutTypeID::kColumnMajor; // TN Gemm
case library::ConvKind::kDgrad: return library::LayoutTypeID::kRowMajor; // TT Gemm
case library::ConvKind::kWgrad: return library::LayoutTypeID::kRowMajor; // NT Gemm
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
// Returns layout for equivalent gemm matrix C
library::LayoutTypeID eq_gemm_layout_c(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
// Gemm operator assumes column-major output
case library::ConvKind::kFprop:
case library::ConvKind::kDgrad:
case library::ConvKind::kWgrad: return library::LayoutTypeID::kColumnMajor;
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
// Returns leading dimenstion for equivalent gemm matrix A
int64_t eq_gemm_lda(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
case library::ConvKind::kFprop: return eq_gemm_size(conv_kind).k();
case library::ConvKind::kDgrad: return eq_gemm_size(conv_kind).k();
case library::ConvKind::kWgrad: return eq_gemm_size(conv_kind).m();
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
// Returns leading dimenstion for equivalent gemm matrix B
int64_t eq_gemm_ldb(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
case library::ConvKind::kFprop: return eq_gemm_size(conv_kind).k();
case library::ConvKind::kDgrad: return eq_gemm_size(conv_kind).n();
case library::ConvKind::kWgrad: return eq_gemm_size(conv_kind).n();
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
// Returns leading dimenstion for equivalent gemm matrix C
int64_t eq_gemm_ldc(library::ConvKind const &conv_kind) const {
switch (conv_kind) {
case library::ConvKind::kFprop:
case library::ConvKind::kDgrad:
case library::ConvKind::kWgrad: return eq_gemm_size(conv_kind).m();
default : throw std::runtime_error("Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
};
/// Workspace used
struct Conv2dWorkspace {
/// Conv device allocations
DeviceAllocation *A;
DeviceAllocation *B;
DeviceAllocation *C;
DeviceAllocation *Computed;
DeviceAllocation *Reference;
/// Library configuration and arguments for convolution operator
library::Conv2dConfiguration configuration;
library::ConvArguments arguments;
/// Number of copies of the problem workspace which are visited sequentially during
/// profiling to avoid camping in the last level cache.
int problem_count;
/// Buffer used for the cutlass conv2d operations' host workspace
std::vector<uint8_t> host_workspace;
/// Buffer used for the cutlass operations' device workspace
DeviceAllocation device_workspace;
/// Library configuration and arguments for reduction operator
library::ReductionConfiguration reduction_configuration;
library::ReductionArguments reduction_arguments;
/// Buffer used for the cutlass reduction operations' host workspace
std::vector<uint8_t> reduction_host_workspace;
/// Host data buffers for host reference operation
/// host buffer for tensor
std::vector<uint8_t> host_tensor_a;
/// host buffer for tensor b
std::vector<uint8_t> host_tensor_b;
/// host buffer for tensor c
std::vector<uint8_t> host_tensor_c;
//
// Methods
//
Conv2dWorkspace()
: A(nullptr),
B(nullptr),
C(nullptr),
Computed(nullptr),
Reference(nullptr) {}
// Set stride vector for tensor activations, filters, output
void set_stride_vector(Conv2dProblem const &problem,
library::ConvKind const &conv_kind,
library::LayoutTypeID const &layout_a,
library::LayoutTypeID const &layout_b,
library::LayoutTypeID const &layout_c) {
std::vector<int64_t> stride_activations;
std::vector<int64_t> stride_filters;
std::vector<int64_t> stride_output;
// Strides for interleaved fprop
if (conv_kind == library::ConvKind::kFprop &&
((layout_a == library::LayoutTypeID::kTensorNC32HW32 &&
layout_b == library::LayoutTypeID::kTensorC32RSK32 &&
layout_c == library::LayoutTypeID::kTensorNC32HW32) ||
(layout_a == library::LayoutTypeID::kTensorNC64HW64 &&
layout_b == library::LayoutTypeID::kTensorC64RSK64 &&
layout_c == library::LayoutTypeID::kTensorNC64HW64))) {
int interleave =
(layout_a == library::LayoutTypeID::kTensorNC32HW32) ? 32 : 64;
stride_activations.push_back(int(problem.w) * interleave);
stride_activations.push_back(int(problem.w) * int(problem.h) *
interleave);
stride_activations.push_back(int(problem.h) * int(problem.w) *
int(problem.c));
stride_filters.push_back(int(problem.k) * interleave);
stride_filters.push_back(int(problem.k) * int(problem.s) * interleave);
stride_filters.push_back(int(problem.k) * int(problem.s) *
int(problem.r) * interleave);
stride_output.push_back(int(problem.q) * interleave);
stride_output.push_back(int(problem.q) * int(problem.p) * interleave);
stride_output.push_back(int(problem.q) * int(problem.p) *
int(problem.k));
} else {
// Strides for the rest cases
stride_activations.push_back(int(problem.c));
stride_activations.push_back(int(problem.w) * int(problem.c));
stride_activations.push_back(int(problem.h) * int(problem.w) *
int(problem.c));
stride_filters.push_back(int(problem.c));
stride_filters.push_back(int(problem.s) * int(problem.c));
stride_filters.push_back(int(problem.r) * int(problem.s) *
int(problem.c));
stride_output.push_back(int(problem.k));
stride_output.push_back(int(problem.q) * int(problem.k));
stride_output.push_back(int(problem.q) * int(problem.p) *
int(problem.k));
}
switch (conv_kind) {
case library::ConvKind::kFprop:
configuration.stride_a = stride_activations;
configuration.stride_b = stride_filters;
configuration.stride_c = stride_output;
break;
case library::ConvKind::kDgrad:
configuration.stride_a = stride_output;
configuration.stride_b = stride_filters;
configuration.stride_c = stride_activations;
break;
case library::ConvKind::kWgrad:
configuration.stride_a = stride_output;
configuration.stride_b = stride_activations;
configuration.stride_c = stride_filters;
break;
default:
throw std::runtime_error(
"Invalid Conv Operator (fprop, dgrad, wgrad)");
}
}
};
protected:
//
// Data members
//
/// CONV problem obtained from problem space
Conv2dProblem problem_;
/// Device memory allocations
Conv2dWorkspace conv_workspace_;
/// CUTLASS parallel reduction operation to follow this* conv2d operation
library::Operation const *reduction_op_;
public:
//
// Methods
//
/// Ctor
Conv2dOperationProfiler(Options const &options);
/// Destructor
virtual ~Conv2dOperationProfiler();
/// Prints usage statement for the math function
virtual void print_usage(std::ostream &out) const;
/// Prints examples
virtual void print_examples(std::ostream &out) const;
/// Extracts the problem dimensions
virtual Status initialize_configuration(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem);
/// Initializes workspace
virtual Status initialize_workspace(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem);
/// Verifies CUTLASS against references
virtual bool verify_cutlass(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem);
/// Measures performance results
virtual bool profile(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem);
protected:
/// Method to profile an initialized CUTLASS operation
virtual Status profile_cutlass_(
double &runtime,
Options const &options,
library::Operation const *operation,
void *arguments,
void *host_workspace,
void *device_workspace);
/// Initialize reduction problem dimenstions and library::Operation
bool initialize_reduction_configuration_(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem);
/// Initializes the performance result
void initialize_result_(
PerformanceResult &result,
Options const &options,
library::ConvDescription const &operation_desc,
ProblemSpace const &problem_space);
/// Verifies CUTLASS against host reference
bool verify_with_host_reference_(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem);
/// Verifies CUTLASS against device reference
bool verify_with_device_reference_(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem);
#if CUTLASS_ENABLE_CUDNN
/// Verifies CUTLASS against cudnn reference
bool verify_with_cudnn_(
Options const &options,
PerformanceReport &report,
DeviceContext &device_context,
library::Operation const *operation,
ProblemSpace const &problem_space,
ProblemSpace::Problem const &problem);
#endif //#if CUTLASS_ENABLE_CUDNN
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace profiler
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////