cutlass/include/cutlass/arch/memory_sm80.h
2022-12-08 18:58:31 -05:00

467 lines
15 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Architecture-specific operators on memory added for SM80
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/complex.h"
#include "cutlass/arch/memory.h"
#include "cutlass/arch/memory_sm75.h"
#include "cutlass/arch/cache_operation.h"
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 800)
#define CUDA_CP_ASYNC_ACTIVATED 1
#else
#define CUDA_CP_ASYNC_ACTIVATED 0
#endif
namespace cutlass {
namespace arch {
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Initiates an asynchronous copy from global memory to shared memory.
///
/// LDGSTS
///
template <
/// Size of the access in bytes
int SizeInBytes,
/// Cache operation
CacheOperation::Kind cache_op = CacheOperation::Always>
struct cp_async;
/// Initiates an asynchronous copy from global memory to shared memory. Rather than predicate
/// the entire transfer, zeros are written to SMEM if the guard predicate is false.
///
/// LDGSTS
///
template <
/// Size of the access in bytes
int SizeInBytes,
/// Cache operation
CacheOperation::Kind cache_op = CacheOperation::Always>
struct cp_async_zfill;
/// Initiates an asynchronous copy from global memory to shared memory. Rather than predicate
/// the entire transfer, nans (0x7eff) are written to SMEM if the guard predicate is false.
///
/// LDGSTS
///
template <
/// Size of the access in bytes
int SizeInBytes,
/// Cache operation
CacheOperation::Kind cache_op = CacheOperation::Always>
struct cp_async_nan;
/// Either 0 or 1 are written to SMEM based on input element type
/// Used for diagonal elements of triangular matrix of BLAS3 functions
///
/// STS
///
template <
/// Type of Element
typename Element,
/// If the data is for a Hermitian matrix diagonal
bool IsHermitianData = false>
struct cp_async_diag;
static const uint32_t OOB_NAN_F16 = 0x7eff;
static const uint32_t OOB_NAN_F16x2 = ((OOB_NAN_F16 << 16) | OOB_NAN_F16);
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Partial specialization
template <
/// Size of the access in bytes
int SizeInBytes>
struct cp_async<SizeInBytes, CacheOperation::Always> {
/// Copy
CUTLASS_DEVICE
cp_async(void *smem_ptr, void const *global_ptr, bool pred_guard = true) {
#if CUDA_CP_ASYNC_ACTIVATED
// Make sure the size is supported.
static_assert((SizeInBytes == 4 || SizeInBytes == 8 || SizeInBytes == 16),
"Size is not supported");
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
asm volatile(
"{\n"
" .reg .pred p;\n"
" setp.ne.b32 p, %0, 0;\n"
#if CUTLASS_ENABLE_L2_PREFETCH
" @p cp.async.ca.shared.global.L2::128B [%1], [%2], %3;\n"
#else
" @p cp.async.ca.shared.global [%1], [%2], %3;\n"
#endif
"}\n" ::"r"((int)pred_guard),
"r"(smem_int_ptr), "l"(global_ptr), "n"(SizeInBytes));
#else
using AccessType = Array<uint8_t, SizeInBytes>;
if (pred_guard) {
*static_cast<AccessType *>(smem_ptr) = *static_cast<AccessType const *>(global_ptr);
}
#endif
}
};
/// Partial specialization
template <
/// Size of the access in bytes
int SizeInBytes>
struct cp_async_zfill<SizeInBytes, CacheOperation::Always> {
/// Copy with zero fill
CUTLASS_DEVICE
cp_async_zfill(void *smem_ptr, void const *global_ptr, bool pred_guard) {
#if CUDA_CP_ASYNC_ACTIVATED
// Make sure the size is supported.
static_assert((SizeInBytes == 4 || SizeInBytes == 8 || SizeInBytes == 16),
"Size is not supported");
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
int src_in_bytes = (pred_guard ? SizeInBytes : 0);
asm volatile(
#if CUTLASS_ENABLE_L2_PREFETCH
"cp.async.ca.shared.global.L2::128B [%0], [%1], %2, %3;\n" ::"r"(smem_int_ptr),
#else
"cp.async.ca.shared.global [%0], [%1], %2, %3;\n" ::"r"(smem_int_ptr),
#endif
"l"(global_ptr), "n"(SizeInBytes), "r"(src_in_bytes));
#else
using AccessType = Array<uint8_t, SizeInBytes>;
if (pred_guard) {
*static_cast<AccessType *>(smem_ptr) = *static_cast<AccessType const *>(global_ptr);
}
else {
AccessType zeros;
zeros.clear();
*static_cast<AccessType *>(smem_ptr) = zeros;
}
#endif
}
};
/// Partial specialization
template <>
struct cp_async_nan<16, CacheOperation::Always> {
static int const kSizeInBytes = 16;
/// Copy with nan fill
CUTLASS_DEVICE
cp_async_nan(void *smem_ptr, void const *global_ptr, bool pred_guard) {
#if CUDA_CP_ASYNC_ACTIVATED
static __constant__ uint4 OOB_NAN_F16x8 = {OOB_NAN_F16x2, OOB_NAN_F16x2,
OOB_NAN_F16x2, OOB_NAN_F16x2};
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
asm volatile(
"{\n"
" .reg .pred p;\n"
" setp.ne.b32 p, %0, 0;\n"
#if CUTLASS_ENABLE_L2_PREFETCH
" @p cp.async.ca.shared.global.L2::128B [%1], [%2], %3;\n"
#else
" @p cp.async.ca.shared.global [%1], [%2], %3;\n"
#endif
" @!p st.shared.v4.u32 [%1], {%4, %5, %6, %7};\n"
"}\n"
:
: "r"((int)pred_guard), "r"(smem_int_ptr), "l"(global_ptr),
"n"(kSizeInBytes), "r"(OOB_NAN_F16x8.x), "r"(OOB_NAN_F16x8.y), "r"(OOB_NAN_F16x8.z),
"r"(OOB_NAN_F16x8.w));
#else
CUTLASS_UNUSED(smem_ptr);
CUTLASS_UNUSED(global_ptr);
CUTLASS_UNUSED(pred_guard);
CUTLASS_NOT_IMPLEMENTED();
#endif
}
};
/// Partial specialization to write one (1)
template<typename Element_>
struct cp_async_diag <Element_, false> {
using Element = Element_;
CUTLASS_DEVICE
cp_async_diag(void *smem_ptr) {
#if CUDA_CP_ASYNC_ACTIVATED
/// Values for the diagonal elements of the triangular input matrix
static __constant__ uint2 DIAG_DATA_DOUBLE_ONE = {0x3ff00000, 0x00000000};
static __constant__ uint1 DIAG_DATA_FLOAT_ONE = {0x3f800000};
static __constant__ uint1 DIAG_DATA_ZERO = {0x00000000};
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
if (platform::is_same<Element, complex<double>>::value) {
asm volatile("st.shared.v4.u32 [%0], {%1, %2, %3, %4};\n"
: :
"r"(smem_int_ptr), "r"(DIAG_DATA_DOUBLE_ONE.y), "r"(DIAG_DATA_DOUBLE_ONE.x),
"r"(DIAG_DATA_ZERO.x), "r"(DIAG_DATA_ZERO.x));
} else if (platform::is_same<Element, complex<float>>::value) {
asm volatile("st.shared.v2.u32 [%0], {%1, %2};\n"
: :
"r"(smem_int_ptr), "r"(DIAG_DATA_FLOAT_ONE.x), "r"(DIAG_DATA_ZERO.x));
} else if (platform::is_same<Element, double>::value) {
asm volatile("st.shared.v2.u32 [%0], {%1, %2};\n"
: :
"r"(smem_int_ptr), "r"(DIAG_DATA_DOUBLE_ONE.y),"r"(DIAG_DATA_DOUBLE_ONE.x));
} else if (platform::is_same<Element, float>::value) {
asm volatile("st.shared.u32 [%0], %1;\n"
: :
"r"(smem_int_ptr), "r"(DIAG_DATA_FLOAT_ONE.x));
} else {
CUTLASS_UNUSED(smem_int_ptr);
CUTLASS_NOT_IMPLEMENTED();
}
#else
CUTLASS_UNUSED(smem_ptr);
CUTLASS_NOT_IMPLEMENTED();
#endif
}
};
/// Partial specialization to write zero for the imaginary part of Hermitian data
template<typename Element_>
struct cp_async_diag <Element_, true> {
using Element = Element_;
CUTLASS_DEVICE
cp_async_diag(void *smem_ptr) {
#if CUDA_CP_ASYNC_ACTIVATED
/// Values for the diagonal elements of the triangular input matrix
static __constant__ uint1 DIAG_DATA_ZERO = {0x00000000};
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
if (platform::is_same<Element, complex<double>>::value) {
asm volatile("st.shared.v2.u32 [%0], {%1, %2};\n"
: :
"r"(smem_int_ptr), "r"(DIAG_DATA_ZERO.x), "r"(DIAG_DATA_ZERO.x));
} else if (platform::is_same<Element, complex<float>>::value) {
asm volatile("st.shared.u32 [%0], %1;\n"
: :
"r"(smem_int_ptr), "r"(DIAG_DATA_ZERO.x));
} else {
CUTLASS_UNUSED(smem_int_ptr);
CUTLASS_NOT_IMPLEMENTED();
}
#else
CUTLASS_UNUSED(smem_ptr);
CUTLASS_NOT_IMPLEMENTED();
#endif
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Partial specialization
template <
/// Size of the access in bytes
int SizeInBytes>
struct cp_async<SizeInBytes, CacheOperation::Global> {
/// Copy
CUTLASS_DEVICE
cp_async(void *smem_ptr, void const *global_ptr, bool pred_guard = true) {
#if CUDA_CP_ASYNC_ACTIVATED
static_assert(SizeInBytes == 16,
"cp.async only supports CacheOperation::Global when access size is 16B.");
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
asm volatile(
"{\n"
" .reg .pred p;\n"
" setp.ne.b32 p, %0, 0;\n"
#if CUTLASS_ENABLE_L2_PREFETCH
" @p cp.async.cg.shared.global.L2::128B [%1], [%2], %3;\n"
#else
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
#endif
"}\n" ::"r"((int)pred_guard),
"r"(smem_int_ptr), "l"(global_ptr), "n"(SizeInBytes));
#else
using AccessType = Array<uint8_t, SizeInBytes>;
if (pred_guard) {
*static_cast<AccessType *>(smem_ptr) = *static_cast<AccessType const *>(global_ptr);
}
#endif
}
};
/// Partial specialization
template <
/// Size of the access in bytes
int SizeInBytes>
struct cp_async_zfill<SizeInBytes, CacheOperation::Global> {
/// Copy with zero fill
CUTLASS_DEVICE
cp_async_zfill(void *smem_ptr, void const *global_ptr, bool pred_guard = true) {
#if CUDA_CP_ASYNC_ACTIVATED
static_assert(SizeInBytes == 16,
"cp.async only supports CacheOperation::Global when access size is 16B.");
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
int src_in_bytes = (pred_guard ? SizeInBytes : 0);
asm volatile(
#if CUTLASS_ENABLE_L2_PREFETCH
"cp.async.cg.shared.global.L2::128B [%0], [%1], %2, %3;\n" ::"r"(smem_int_ptr),
#else
"cp.async.cg.shared.global [%0], [%1], %2, %3;\n" ::"r"(smem_int_ptr),
#endif
"l"(global_ptr), "n"(SizeInBytes), "r"(src_in_bytes));
#else
using AccessType = Array<uint8_t, SizeInBytes>;
if (pred_guard) {
*static_cast<AccessType *>(smem_ptr) = *static_cast<AccessType const *>(global_ptr);
}
else {
AccessType zeros;
zeros.clear();
*static_cast<AccessType *>(smem_ptr) = zeros;
}
#endif
}
};
/// Partial specialization
template <>
struct cp_async_nan<16, CacheOperation::Global> {
static int const kSizeInBytes = 16;
/// Copy with nan fill
CUTLASS_DEVICE
cp_async_nan(void *smem_ptr, void const *global_ptr, bool pred_guard) {
#if CUDA_CP_ASYNC_ACTIVATED
static __constant__ uint4 OOB_NAN_F16x8 = {OOB_NAN_F16x2, OOB_NAN_F16x2,
OOB_NAN_F16x2, OOB_NAN_F16x2};
unsigned smem_int_ptr = cutlass_get_smem_pointer(smem_ptr);
asm volatile(
"{\n"
" .reg .pred p;\n"
" setp.ne.b32 p, %0, 0;\n"
#if CUTLASS_ENABLE_L2_PREFETCH
" @p cp.async.cg.shared.global.L2::128B [%1], [%2], %3;\n"
#else
" @p cp.async.cg.shared.global [%1], [%2], %3;\n"
#endif
" @!p st.shared.v4.u32 [%1], {%4, %5, %6, %7};\n"
"}\n"
:
: "r"((int)pred_guard), "r"(smem_int_ptr), "l"(global_ptr),
"n"(kSizeInBytes), "r"(OOB_NAN_F16x8.x), "r"(OOB_NAN_F16x8.y), "r"(OOB_NAN_F16x8.z),
"r"(OOB_NAN_F16x8.w));
#else
CUTLASS_UNUSED(smem_ptr);
CUTLASS_UNUSED(global_ptr);
CUTLASS_UNUSED(pred_guard);
CUTLASS_NOT_IMPLEMENTED();
#endif
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Establishes an ordering w.r.t previously issued cp.async instructions. Does not block.
CUTLASS_DEVICE
void cp_async_fence() {
#if CUDA_CP_ASYNC_ACTIVATED
asm volatile("cp.async.commit_group;\n" ::);
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Blocks until all but <N> previous cp.async.commit_group operations have committed.
template <int N>
CUTLASS_DEVICE void cp_async_wait() {
#if CUDA_CP_ASYNC_ACTIVATED
asm volatile("cp.async.wait_group %0;\n" ::"n"(N));
#endif
}
/// Blocks until all previous cp.async.commit_group operations have committed.
template <>
CUTLASS_DEVICE void cp_async_wait<0>() {
#if CUDA_CP_ASYNC_ACTIVATED
asm volatile("cp.async.wait_all;\n" ::);
#endif
}
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace arch
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////