cutlass/test/unit/gemm/device/gemm_testbed_3x_ptr_array.hpp
Vijay Thakkar be60a0b272
CUTLASS 3.5.1 (#1623)
* CUTLASS 3.5.1

* updates, optimizations, fixes
2024-07-29 08:46:24 -04:00

1793 lines
67 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Testbed for Ptr-Array and Grouped GEMM interface
*/
#pragma once
#include <iostream>
#include <fstream>
#include <sstream>
#include <algorithm>
#include <random>
#include "../../common/cutlass_unit_test.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/gett.hpp"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/fusion/operations.hpp"
#include "cutlass/complex.h"
#include "testbed_utils.h"
#include "cutlass/kernel_hardware_info.hpp"
#include "cutlass/layout/matrix.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/gemm/gemm.h"
#include "cute/int_tuple.hpp"
#include "cute/layout.hpp"
#include "cute/numeric/int.hpp"
namespace test {
namespace gemm {
namespace device {
/////////////////////////////////////////////////////////////////////////////////////////////////
enum class ScalarLoc {
ON_HOST = 0,
ON_DEVICE = 1
};
enum class VectorBeta {
DISABLED = 0,
ENABLED = 1
};
enum class CheckEquality {
EXACT = 0,
RELATIVE = 1
};
namespace detail{
// Helper classes that take default data type when
// the Gemm::EpilogueOutputOp does not have ElementCompute
// and ElementScalar.
// (e.g. when Sm90TreeVisitor is used as FusionCallbacks)
template <typename Gemm, typename Default, typename = void>
struct ElementComputeType {
using Type = Default;
};
template <typename Gemm, typename Default>
struct ElementComputeType<Gemm, Default, std::void_t<typename Gemm::EpilogueOutputOp::ElementCompute>> {
using Type = typename Gemm::EpilogueOutputOp::ElementCompute;
};
template <typename Gemm, typename Default, typename = void>
struct ElementScalarType {
using Type = Default;
};
template <typename Gemm, typename Default>
struct ElementScalarType<Gemm, Default, std::void_t<typename Gemm::EpilogueOutputOp::ElementScalar>> {
using Type = typename Gemm::EpilogueOutputOp::ElementScalar;
};
// The maximum swizzle size to use
//
// This class, like Splits above makes it harder to confuse
// the order of arguments of the various run(...) functions in this file.
class MaxSwizzleSize {
public:
MaxSwizzleSize() = default;
template<class IntegralNotBool,
__CUTE_REQUIRES((std::is_integral_v<IntegralNotBool> &&
!cute::is_same_v<IntegralNotBool, bool>)) >
explicit MaxSwizzleSize(IntegralNotBool max_swizzle_size) : max_swizzle_size_(max_swizzle_size) {}
explicit operator int() const { return max_swizzle_size_; }
private:
int max_swizzle_size_ = 1;
};
template <typename T>
auto make_iterator(T* ptr) {
using namespace cute;
if constexpr (cute::is_subbyte_v<T>) {
return subbyte_iterator<T>(ptr);
}
else {
return ptr;
}
}
template<class T>
struct IsDefaultEpilogue {
static constexpr bool value = false;
};
template<class ...args>
struct IsDefaultEpilogue<cutlass::epilogue::collective::DefaultEpilogue<args...>> {
static constexpr bool value = true;
};
template<class ...args>
struct IsDefaultEpilogue<cutlass::epilogue::collective::detail::Sm90TmaWarpSpecializedAdapter<args...>> {
static constexpr bool value = true;
};
// The number of splits to test.
//
// This class makes it harder to confuse the order of arguments
// of the various run(...) functions in this file. The constructor
// is explicit, so one can't just type 42 (or false, which the
// compiler unhelpfully turns into 0); one has to type Splits(42).
// Splits() picks the default number of splits, 1.
//
// The conversion-to-int operator (operator int()) MUST be explicit!
// Conversion to int MUST require static_cast<int>.
// Otherwise, that defeats a key purpose of this class,
// which is to catch common errors of confusing the order
// of function arguments.
class Splits {
public:
Splits() = default;
template<class IntegralNotBool,
__CUTE_REQUIRES((std::is_integral_v<IntegralNotBool> &&
!cute::is_same_v<IntegralNotBool, bool>)) >
explicit Splits(IntegralNotBool splits) : splits_(splits) {}
explicit operator int() const { return splits_; }
private:
int splits_ = 1;
};
// The number of iterations to test.
//
// This class, like Splits above makes it harder to confuse
// the order of arguments of the various run(...) functions in this file.
// Iterations() picks the default number of iterations, 20.
class Iterations {
public:
Iterations() = default;
template<class IntegralNotBool,
__CUTE_REQUIRES((std::is_integral_v<IntegralNotBool> &&
!cute::is_same_v<IntegralNotBool, bool>)) >
explicit Iterations(IntegralNotBool iterations) : iterations_(iterations) {}
explicit operator int() const { return iterations_; }
private:
int iterations_ = 20;
};
template <typename Element, typename Layout>
bool initialize_tensor(
cutlass::TensorView<Element, Layout> view,
cutlass::Distribution::Kind dist_kind,
uint64_t seed) {
if (dist_kind == cutlass::Distribution::Uniform) {
double scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
if (bits_input == 1) {
scope_max = 2;
scope_min = 0;
}
else if (bits_input <= 8) {
scope_max = 1;
scope_min = -1;
}
else{
scope_max = 4;
scope_min = -4;
}
cutlass::reference::host::TensorFillRandomUniform(
view, seed, scope_max, scope_min, 0);
}
else if (dist_kind == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(view);
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
}
else if (dist_kind == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
else if (dist_kind == cutlass::Distribution::AllOnes) {
cutlass::reference::host::TensorFill(view, Element(1));
}
else {
EXPECT_TRUE(false) << "Not implemented";
return false;
}
return true;
}
// Looks at Cute Stride to check Row / Column Major
template<typename Stride>
static constexpr bool is_row_or_col_major(){
int stride_0 = int(cute::size<0>(Stride{}));
int stride_1 = int(cute::size<1>(Stride{}));
int depth = cute::depth(Stride{});
return ((stride_0 == 1) || (stride_1 == 1)) && (depth == 1);
}
//
// Default MMA input Operands : A , B
//
template<
class ScheduleType_,
class Gemm,
class ElementA_ = typename Gemm::GemmKernel::ElementA,
class ElementB_ = typename Gemm::GemmKernel::ElementB>
struct HostCollectiveMainloop {
// Kernel data types
using ElementA = ElementA_;
using StrideA = typename Gemm::GemmKernel::StrideA;
using InternalStrideA = typename Gemm::GemmKernel::InternalStrideA;
using ElementB = ElementB_;
using StrideB = typename Gemm::GemmKernel::StrideB;
using InternalStrideB = typename Gemm::GemmKernel::InternalStrideB;
using ScheduleType = typename Gemm::GemmKernel::CollectiveMainloop::DispatchPolicy::Schedule;
using LayoutTagA = cutlass::detail::StrideToLayoutTagA_t<StrideA>;
using LayoutTagB = cutlass::detail::StrideToLayoutTagB_t<StrideB>;
static constexpr bool IsGroupGemm = !cute::is_same_v<StrideA, InternalStrideA>;
using ElementAccumulator = typename Gemm::GemmKernel::ElementAccumulator;
using ElementScalingFactor = ElementAccumulator;
using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape;
using EpilogueOutputOp = typename Gemm::EpilogueOutputOp;
using Arguments = typename Gemm::GemmKernel::MainloopArguments;
cutlass::ComplexTransform TransformA = Gemm::kTransformA;
cutlass::ComplexTransform TransformB = Gemm::kTransformB;
std::vector<InternalStrideA> stride_a_host;
std::vector<InternalStrideB> stride_b_host;
cutlass::DeviceAllocation<InternalStrideA> stride_a_device;
cutlass::DeviceAllocation<InternalStrideB> stride_b_device;
typename LayoutTagA::Stride stride_factor_A;
typename LayoutTagB::Stride stride_factor_B;
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_B;
std::vector<cutlass::HostTensor<ElementA, LayoutTagA>> tensors_A;
std::vector<cutlass::HostTensor<ElementB, LayoutTagB>> tensors_B;
cutlass::DeviceAllocation<const ElementA *> device_tensors_A;
cutlass::DeviceAllocation<const ElementB *> device_tensors_B;
// Whether to use relative equality checks
CheckEquality check_relative_equality = CheckEquality::EXACT;
uint64_t seed;
static constexpr uint64_t kDefaultSeed = 4096;
// Note: this limitation comes from testbed / not the library
static_assert(is_row_or_col_major<InternalStrideA>(),
"ERROR : A Layout is neither Row / Column Major)");
static_assert(is_row_or_col_major<InternalStrideB>(),
"ERROR : B Layout is neither Row / Column Major)");
HostCollectiveMainloop(
CheckEquality check_relative_equality_ = CheckEquality::EXACT,
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
uint64_t seed_ = kDefaultSeed,
typename LayoutTagA::Stride stride_factor_A_ = typename LayoutTagA::Stride(),
typename LayoutTagB::Stride stride_factor_B_ = typename LayoutTagB::Stride()
):
stride_factor_A(stride_factor_A_),
stride_factor_B(stride_factor_B_),
init_A(init_A_), init_B(init_B_), seed(seed_),
check_relative_equality(check_relative_equality_) { }
bool initialize(ProblemShapeType problem_shapes) {
//
// Allocate the GEMM workspace
//
// for pointer array problem_shapes.groups() is 1
tensors_A.clear();
tensors_B.clear();
stride_a_host.clear();
stride_b_host.clear();
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(0), 1);
L = max(problem_shapes.groups(), L);
for(int32_t i = 0; i < L; ++i) {
auto [M, N, K, mock_L] = cute::append<4>(problem_shapes.get_host_problem_shape(i), 1);
stride_a_host.push_back(cutlass::make_cute_packed_stride(InternalStrideA{}, {M, K, 1}));
stride_b_host.push_back(cutlass::make_cute_packed_stride(InternalStrideB{}, {N, K, 1}));
// 2.x host tensor does not natively contain a batch stride or coord, so we spoof if by folding it into the outer mode
auto a_coord = cutlass::make_Coord(M, K);
// Cutlass has Row/Col major refers to MxK times KxN matrix product,
// so the HostTensorB should be treated as KxN in "coord"'s view
auto b_coord = cutlass::make_Coord(K, N);
tensors_A.push_back(cutlass::HostTensor<ElementA, LayoutTagA>(a_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagA>::layout_factory(a_coord, stride_factor_A)));
tensors_B.push_back(cutlass::HostTensor<ElementB, LayoutTagB>(b_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagB>::layout_factory(b_coord, stride_factor_B)));
EXPECT_TRUE(initialize_tensor(tensors_A[i].host_view(), init_A, seed + 2022 + i));
EXPECT_TRUE(initialize_tensor(tensors_B[i].host_view(), init_B, seed + 2021 + i));
// It is possible to randomly initialize to all zeros, so override this with non-zeros
// in the upper left corner of each operand.
tensors_A[i].host_view().at({0, 0}) = ElementA(1);
tensors_B[i].host_view().at({0, 0}) = ElementB(1);
tensors_A[i].sync_device();
tensors_B[i].sync_device();
}
return true;
}
Arguments to_args(ProblemShapeType problem_shapes) {
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(0), 1);
L = max(problem_shapes.groups(), L);
std::vector<ElementA *> ptr_A_host(L);
std::vector<ElementB *> ptr_B_host(L);
for (int32_t i = 0; i < L; ++i) {
ptr_A_host.at(i) = tensors_A[i].device_data();
ptr_B_host.at(i) = tensors_B[i].device_data();
}
device_tensors_A.reset(L);
device_tensors_A.copy_from_host(ptr_A_host.data());
device_tensors_B.reset(L);
device_tensors_B.copy_from_host(ptr_B_host.data());
stride_a_device.reset(problem_shapes.groups());
stride_a_device.copy_from_host(stride_a_host.data());
stride_b_device.reset(problem_shapes.groups());
stride_b_device.copy_from_host(stride_b_host.data());
Arguments arguments;
if constexpr (IsGroupGemm) {
arguments
=
{
device_tensors_A.get(), stride_a_device.get(), device_tensors_B.get(), stride_b_device.get()
};
}
else {
arguments =
{
device_tensors_A.get(), stride_a_host[0], device_tensors_B.get(), stride_b_host[0]
};
}
return arguments;
}
auto to_host_args(ProblemShapeType problem_shapes, int batch) {
using namespace cute;
//
// Allocate the GEMM workspace
//
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(batch), 1);
auto A = make_tensor(make_iterator(tensors_A[batch].host_data()),
make_layout(make_shape(M, K, 1), stride_a_host[batch]));
auto B = make_tensor(make_iterator(tensors_B[batch].host_data()),
make_layout(make_shape(N, K, 1), stride_b_host[batch]));
cutlass::reference::host::GettMainloopParams<ElementAccumulator,
decltype(A),
decltype(B)
> mainloop_params{};
mainloop_params.A = A;
mainloop_params.B = B;
mainloop_params.transform_A = TransformA;
mainloop_params.transform_B = TransformB;
return mainloop_params;
}
void print_tensors(std::ofstream& file, int batch) {
file << "A =\n" << tensors_A[batch].host_view()
<< "\nB =\n" << tensors_B[batch].host_view();
}
template <
class Element,
class Layout
>
bool equality_check(
cutlass::TensorView<Element, Layout> const& lhs,
cutlass::TensorView<Element, Layout> const& rhs) const {
// Factors used for calculating relative equality. CUTLASS's relative-equality
// checks in include/cutlass/relatively_equal.h are inspired by
// https://floating-point-gui.de/errors/comparison/. This reference suggests using
// the minimum normal value of a given type as the nonzero_floor.
Element epsilon(static_cast<Element>(0.1f));
Element nonzero_floor(std::numeric_limits<Element>::min());
if constexpr (!cutlass::is_complex<Element>::value) {
if (check_relative_equality == CheckEquality::RELATIVE) {
return cutlass::reference::host::TensorRelativelyEquals(
lhs, rhs, epsilon, nonzero_floor);
}
else {
return cutlass::reference::host::TensorEquals(lhs, rhs);
}
}
else {
return cutlass::reference::host::TensorEquals(lhs, rhs);
}
}
bool compare_reference(
ProblemShapeType problem_shapes, int batch) {
EXPECT_GT(cutlass::reference::host::TensorNorm(tensors_A[batch].host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(tensors_B[batch].host_view()), 0);
bool passed = true;
return passed;
}
};
template<class Gemm>
struct HostCollectiveDefaultEpilogue {
// fusion types are potentially void if the fusion is not supported
// helper so we don't try to construct HostTensor with void type
template <typename T, typename U = uint8_t>
using non_void_t = cute::conditional_t<cute::is_void_v<T>, U, T>;
using ScheduleType = typename Gemm::GemmKernel::CollectiveMainloop::DispatchPolicy::Schedule;
using kernel = typename Gemm::GemmKernel;
using Epilogue = typename kernel::CollectiveEpilogue;
using ElementD = typename kernel::ElementD;
using StrideD = typename kernel::StrideD;
using InternalStrideD = typename kernel::InternalStrideD;
using ElementC = non_void_t<typename kernel::ElementC, ElementD>;
using StrideC = typename kernel::StrideC;
using InternalStrideC = typename kernel::InternalStrideC;
static constexpr bool IsGroupGemm = !cute::is_same_v<StrideD, InternalStrideD>;
using FusionOp = typename Gemm::EpilogueOutputOp;
static_assert(rank(InternalStrideC{}) == 3, "StrideCD must be rank-3: [M, N, L]");
static_assert(rank(InternalStrideD{}) == 3, "StrideCD must be rank-3: [M, N, L]");
static_assert(is_row_or_col_major<InternalStrideC>(),
"ERROR : C Layout is neither Row / Column Major)");
static_assert(is_row_or_col_major<InternalStrideD>(),
"ERROR : D Layout is neither Row / Column Major)");
// Deduce Cutlass Layouts (RowMajor & ColumnMajor)
using LayoutTagC = cutlass::detail::StrideToLayoutTagC_t<StrideC>;
using LayoutTagD = cutlass::detail::StrideToLayoutTagC_t<StrideD>;
using LayoutTagScalar = cutlass::layout::PackedVectorLayout; // scalars are size-1 vectors
using LayoutTagVector = cutlass::layout::PackedVectorLayout;
using ElementAccumulator = typename kernel::ElementAccumulator;
using ElementScalingFactor = ElementAccumulator;
using ProblemShapeType = typename kernel::ProblemShape;
using ElementCompute = typename ElementComputeType<Gemm, ElementAccumulator>::Type;
using ElementScalar = typename ElementScalarType<Gemm, ElementCompute>::Type;
using Arguments = typename Gemm::GemmKernel::EpilogueArguments;
/// Initialization
cutlass::DeviceAllocation<InternalStrideC> stride_c_device;
cutlass::DeviceAllocation<InternalStrideD> stride_d_device;
std::vector<InternalStrideC> stride_c_host;
std::vector<InternalStrideD> stride_d_host;
typename LayoutTagC::Stride stride_factor_C;
typename LayoutTagD::Stride stride_factor_D;
// Inputs
ElementScalar alpha;
ElementScalar beta;
std::vector<cutlass::HostTensor<ElementC, LayoutTagC>> tensors_C;
std::vector<cutlass::HostTensor<ElementD, LayoutTagD>> tensors_D;
std::vector<cutlass::HostTensor<ElementD, LayoutTagD>> references_D;
cutlass::DeviceAllocation<const ElementC *> device_tensors_C;
cutlass::DeviceAllocation<ElementD *> device_tensors_D;
// Whether to use relative equality checks
CheckEquality check_relative_equality = CheckEquality::EXACT;
// Are scalars copied to device memory before kernel launch
ScalarLoc use_device_scalars = ScalarLoc::ON_HOST;
// If per-row scale is enabled and this is true, beta is passed as a host scalar instead of device vector
VectorBeta disable_vector_beta = VectorBeta::DISABLED;
cutlass::Distribution::Kind init_C;
uint64_t seed;
static constexpr uint64_t kDefaultSeed = 4096;
HostCollectiveDefaultEpilogue(
CheckEquality check_relative_equality_ = CheckEquality::EXACT,
ScalarLoc use_device_scalars_ = ScalarLoc::ON_HOST,
VectorBeta disable_vector_beta_ = VectorBeta::DISABLED,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_scale_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_bias_ = cutlass::Distribution::Uniform,
uint64_t seed_ = kDefaultSeed
): init_C(init_C_), seed(seed_),
stride_factor_C(typename LayoutTagC::Stride()),
stride_factor_D(typename LayoutTagD::Stride()),
check_relative_equality(check_relative_equality_),
use_device_scalars(use_device_scalars_){ }
bool initialize(ProblemShapeType problem_shapes, ElementScalar alpha_=1.f, ElementScalar beta_=0.f) {
// Initialize Epilogue tensors
tensors_C.clear();
tensors_D.clear();
references_D.clear();
stride_c_host.clear();
stride_d_host.clear();
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(0), 1);
L = max(problem_shapes.groups(), L);
for (int32_t i = 0; i < L; ++i) {
auto [M, N, K, mock_L] = cute::append<4>(problem_shapes.get_host_problem_shape(i), 1);
stride_c_host.push_back(cutlass::make_cute_packed_stride(InternalStrideC{}, {M, N, 1}));
stride_d_host.push_back(cutlass::make_cute_packed_stride(InternalStrideD{}, {M, N, 1}));
// 2.x host tensor does not natively contain a batch stride or coord, so we spoof if by folding it into the outer mode
auto c_coord = cutlass::make_Coord(M, N);
tensors_C.push_back(cutlass::HostTensor<ElementC, LayoutTagC>(c_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagC>::layout_factory(c_coord, stride_factor_C)));
tensors_D.push_back(cutlass::HostTensor<ElementD, LayoutTagD>(c_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagD>::layout_factory(c_coord, stride_factor_D)));
references_D.push_back(cutlass::HostTensor<ElementD, LayoutTagD>(c_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagD>::layout_factory(c_coord, stride_factor_D), false));
EXPECT_TRUE(initialize_tensor(tensors_C[i].host_view(), init_C, seed + 2020));
tensors_C[i].host_view().at({0, 0}) = ElementC(1);
cutlass::reference::host::TensorCopy(references_D[i].host_view(), tensors_C[i].host_view());
tensors_C[i].sync_device();
tensors_D[i].sync_device();
}
alpha = alpha_;
beta = beta_;
return true;
}
template <
class Element,
class Layout
>
bool equality_check(
cutlass::TensorView<Element, Layout> const& lhs,
cutlass::TensorView<Element, Layout> const& rhs) const {
// Factors used for calculating relative equality. CUTLASS's relative-equality
// checks in include/cutlass/relatively_equal.h are inspired by
// https://floating-point-gui.de/errors/comparison/. This reference suggests using
// the minimum normal value of a given type as the nonzero_floor.
Element epsilon(static_cast<Element>(0.1f));
Element nonzero_floor(std::numeric_limits<Element>::min());
if constexpr (!cutlass::is_complex<Element>::value) {
if (check_relative_equality == CheckEquality::RELATIVE) {
return cutlass::reference::host::TensorRelativelyEquals(
lhs, rhs, epsilon, nonzero_floor);
}
else {
return cutlass::reference::host::TensorEquals(lhs, rhs);
}
}
else {
return cutlass::reference::host::TensorEquals(lhs, rhs);
}
}
bool compare_reference(
ProblemShapeType problem_shapes,
ElementScalar alpha,
ElementScalar beta,
int batch) {
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(0), 1);
L = max(problem_shapes.groups(), L);
tensors_D[batch].sync_host();
EXPECT_GT(cutlass::reference::host::TensorNorm(tensors_C[batch].host_view()), 0);
if (tensors_D[batch].size() > 1) {
EXPECT_GT(cutlass::reference::host::TensorNorm(tensors_D[batch].host_view()), 0);
}
if (references_D[batch].size() > 1) {
EXPECT_GT(cutlass::reference::host::TensorNorm(references_D[batch].host_view()), 0);
}
bool passed = equality_check(references_D[batch].host_view(), tensors_D[batch].host_view());
if(!passed) {
std::cout<<"D is incorrect"<<std::endl;
}
return passed;
}
void print_tensors(std::ofstream& file, int batch) {
file
<< "\nC =\n" << tensors_C[batch].host_view()
<< "\n\nReference =\n" << references_D[batch].host_view()
<< "\n\nComputed =\n" << tensors_D[batch].host_view();
}
Arguments to_args(ProblemShapeType problem_shapes) {
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(0), 1);
L = max(problem_shapes.groups(), L);
std::vector<ElementC *> ptr_C_host(L);
std::vector<ElementD *> ptr_D_host(L);
for (int32_t i = 0; i < L; ++i) {
ptr_C_host.at(i) = tensors_C[i].device_data();
ptr_D_host.at(i) = tensors_D[i].device_data();
}
device_tensors_C.reset(L);
device_tensors_C.copy_from_host(ptr_C_host.data());
device_tensors_D.reset(L);
device_tensors_D.copy_from_host(ptr_D_host.data());
stride_c_device.reset(problem_shapes.groups());
stride_c_device.copy_from_host(stride_c_host.data());
stride_d_device.reset(problem_shapes.groups());
stride_d_device.copy_from_host(stride_d_host.data());
Arguments arguments;
if constexpr (IsGroupGemm) {
arguments =
{
{alpha, beta},
device_tensors_C.get(), stride_c_device.get(), device_tensors_D.get(), stride_d_device.get()
};
}
else {
arguments =
{
{alpha, beta},
device_tensors_C.get(), stride_c_host[0], device_tensors_D.get(), stride_d_host[0]
};
}
return arguments;
}
auto to_host_args(ProblemShapeType problem_shapes, int batch) {
using namespace cute;
//
// Allocate the GEMM workspace
//
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(0), 1);
L = max(problem_shapes.groups(), L);
auto coord_0 = cutlass::make_Coord(0);
auto C = cute::make_tensor(detail::make_iterator(tensors_C[batch].host_data()),
cute::make_layout(cute::make_shape(M, N, 1), stride_c_host[batch]));
auto D = cute::make_tensor(detail::make_iterator(references_D[batch].host_data()),
cute::make_layout(cute::make_shape(M, N, 1), stride_d_host[batch]));
cutlass::reference::host::GettEpilogueParams<
ElementScalar,
ElementScalar,
ElementAccumulator,
ElementCompute,
decltype(C),
decltype(D)>
epilogue_params{};
epilogue_params.C = C;
epilogue_params.D = D;
epilogue_params.alpha = alpha;
epilogue_params.beta = beta;
return epilogue_params;
}
};
template<class Gemm>
struct HostCollectiveEpilogue {
// fusion types are potentially void if the fusion is not supported
// helper so we don't try to construct HostTensor with void type
template <typename T, typename U = uint8_t>
using non_void_t = cute::conditional_t<cute::is_void_v<T>, U, T>;
using ScheduleType = typename Gemm::GemmKernel::CollectiveMainloop::DispatchPolicy::Schedule;
using kernel = typename Gemm::GemmKernel;
using Epilogue = typename kernel::CollectiveEpilogue;
static_assert(IsDefaultEpilogue<Epilogue>::value == false, "Default Epilogue is not supported");
using ElementD = typename kernel::ElementD;
using StrideD = typename kernel::StrideD;
using InternalStrideD = typename kernel::InternalStrideD;
using ElementC = non_void_t<typename kernel::ElementC, ElementD>;
using StrideC = typename kernel::StrideC;
using InternalStrideC = typename kernel::InternalStrideC;
static constexpr bool IsGroupGemm = !cute::is_same_v<StrideD, InternalStrideD>;
static_assert(rank(InternalStrideC{}) == 3, "StrideCD must be rank-3: [M, N, L]");
static_assert(rank(InternalStrideD{}) == 3, "StrideCD must be rank-3: [M, N, L]");
static_assert(is_row_or_col_major<InternalStrideC>(),
"ERROR : C Layout is neither Row / Column Major)");
static_assert(is_row_or_col_major<InternalStrideD>(),
"ERROR : D Layout is neither Row / Column Major)");
// Deduce Cutlass Layouts (RowMajor & ColumnMajor)
using LayoutTagC = cutlass::detail::StrideToLayoutTagC_t<StrideC>;
using LayoutTagD = cutlass::detail::StrideToLayoutTagC_t<StrideD>;
using LayoutTagScalar = cutlass::layout::PackedVectorLayout; // scalars are size-1 vectors
using LayoutTagVector = cutlass::layout::PackedVectorLayout;
using ElementAccumulator = typename kernel::ElementAccumulator;
using ElementScalingFactor = ElementAccumulator;
using ProblemShapeType = typename kernel::ProblemShape;
//
// FusionOperation derived types/queries
//
using EpiloguePolicy = typename Epilogue::DispatchPolicy;
static constexpr bool IsLegacy =
cute::is_same_v<
EpiloguePolicy,
cutlass::epilogue::Sm90TmaWarpSpecializedBiasElementwise<
EpiloguePolicy::StagesC, EpiloguePolicy::StagesD, EpiloguePolicy::FragmentSize>
>;
using FusionOp = typename Gemm::EpilogueOutputOp;
static_assert(cute::is_base_of_v<cutlass::epilogue::fusion::FusionOperation, FusionOp>);
using ElementCompute = typename FusionOp::ElementCompute;
using ElementScalar = typename FusionOp::ElementScalar;
using ElementBias = non_void_t<typename FusionOp::ElementBias>;
using ElementAux = non_void_t<typename FusionOp::ElementAux>;
using ElementAmax = non_void_t<typename FusionOp::ElementAmax>;
using LayoutTagAux = non_void_t<typename FusionOp::GmemLayoutTagAux, LayoutTagD>;
using ActivationFunctor = non_void_t<typename FusionOp::ActivationFn,
cutlass::epilogue::thread::Identity<ElementCompute>>;
static constexpr bool IsBiasEnabled = FusionOp::IsPerRowBiasSupported;
static constexpr bool IsDeBiasEnabled = FusionOp::IsDePerRowBiasSupported;
static constexpr bool IsPerRowScaleEnabled = FusionOp::IsPerRowScaleSupported;
static constexpr bool IsScaleFactorEnabled = FusionOp::IsScaleFactorSupported;
static constexpr bool IsAuxInEnabled = FusionOp::IsAuxInSupported;
static constexpr bool IsAuxOutEnabled = FusionOp::IsAuxOutSupported;
static constexpr bool IsAbsMaxEnabledD = FusionOp::IsAbsMaxSupported &&
(cute::is_same_v<ElementD, cutlass::float_e4m3_t> ||
cute::is_same_v<ElementD, cutlass::float_e5m2_t>);
static constexpr bool IsAbsMaxEnabledAux = IsAuxOutEnabled && FusionOp::IsAbsMaxSupported &&
(cute::is_same_v<ElementAux, cutlass::float_e4m3_t> ||
cute::is_same_v<ElementAux, cutlass::float_e5m2_t>);
using Arguments = typename Gemm::GemmKernel::EpilogueArguments;
/// Initialization
cutlass::DeviceAllocation<InternalStrideC> stride_c_device;
cutlass::DeviceAllocation<InternalStrideD> stride_d_device;
std::vector<InternalStrideC> stride_c_host;
std::vector<InternalStrideD> stride_d_host;
typename LayoutTagC::Stride stride_factor_C;
typename LayoutTagD::Stride stride_factor_D;
// Inputs
cutlass::HostTensor<ElementScalar, LayoutTagScalar> alpha;
cutlass::HostTensor<ElementScalar, LayoutTagScalar> beta;
cutlass::HostTensor<ElementScalar, LayoutTagScalar> scale_A;
cutlass::HostTensor<ElementScalar, LayoutTagScalar> scale_B;
cutlass::HostTensor<ElementScalar, LayoutTagScalar> scale_C;
cutlass::HostTensor<ElementScalar, LayoutTagScalar> scale_D;
cutlass::HostTensor<ElementScalar, LayoutTagScalar> scale_Aux;
cutlass::HostTensor<ElementBias , LayoutTagVector> bias;
std::vector<cutlass::HostTensor<ElementC, LayoutTagC>> tensors_C;
cutlass::DeviceAllocation<const ElementC *> device_tensors_C;
cutlass::HostTensor<ElementCompute, LayoutTagScalar> norm_constant;
// Outputs
cutlass::HostTensor<ElementAmax, LayoutTagScalar> abs_max_Aux;
cutlass::HostTensor<ElementAmax, LayoutTagScalar> abs_max_D;
std::vector<cutlass::HostTensor<ElementAux , LayoutTagAux>> tensors_Aux;
cutlass::DeviceAllocation<ElementAux *> device_tensors_Aux;
cutlass::gemm::TagToStrideC_t< LayoutTagAux > stride_Aux;
std::vector<cutlass::HostTensor<ElementD, LayoutTagD>> tensors_D;
std::vector<cutlass::HostTensor<ElementD, LayoutTagD>> references_D;
cutlass::DeviceAllocation<ElementD *> device_tensors_D;
// References
cutlass::HostTensor<ElementBias, LayoutTagVector> reference_dbias;
std::vector<cutlass::HostTensor<ElementAux , LayoutTagAux>> references_Aux;
cutlass::HostTensor<ElementAmax, LayoutTagScalar> reference_abs_max_Aux;
cutlass::HostTensor<ElementAmax, LayoutTagScalar> reference_abs_max_D;
// Whether to use relative equality checks
CheckEquality check_relative_equality = CheckEquality::EXACT;
// Are scalars copied to device memory before kernel launch
ScalarLoc use_device_scalars = ScalarLoc::ON_HOST;
// If per-row scale is enabled and this is true, beta is passed as a host scalar instead of device vector
VectorBeta disable_vector_beta = VectorBeta::DISABLED;
// Random distribution with which to initialize the A/B/C/D/Aux scaling factors
cutlass::Distribution::Kind init_scale = cutlass::Distribution::Uniform;
// Random distribution with which to initialize the bias vector
cutlass::Distribution::Kind init_bias = cutlass::Distribution::Uniform;
cutlass::Distribution::Kind init_C;
uint64_t seed;
static constexpr uint64_t kDefaultSeed = 4096;
HostCollectiveEpilogue(
CheckEquality check_relative_equality_ = CheckEquality::EXACT,
ScalarLoc use_device_scalars_ = ScalarLoc::ON_HOST,
VectorBeta disable_vector_beta_ = VectorBeta::DISABLED,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_scale_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_bias_ = cutlass::Distribution::Uniform,
uint64_t seed_ = kDefaultSeed
): init_scale(init_scale_), init_bias(init_bias_),
init_C(init_C_), seed(seed_),
stride_factor_C(typename LayoutTagC::Stride()),
stride_factor_D(typename LayoutTagD::Stride()),
check_relative_equality(check_relative_equality_),
use_device_scalars(use_device_scalars_){ }
bool initialize(ProblemShapeType problem_shapes, ElementScalar alpha_=1.f, ElementScalar beta_=0.f) {
// Initialize Epilogue tensors
tensors_C.clear();
tensors_D.clear();
references_D.clear();
stride_c_host.clear();
stride_d_host.clear();
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(0), 1);
L = max(problem_shapes.groups(), L);
for (int32_t i = 0; i < L; ++i) {
auto [M, N, K, mock_L] = cute::append<4>(problem_shapes.get_host_problem_shape(i), 1);
stride_c_host.push_back(cutlass::make_cute_packed_stride(InternalStrideC{}, {M, N, 1}));
stride_d_host.push_back(cutlass::make_cute_packed_stride(InternalStrideD{}, {M, N, 1}));
auto c_coord = cutlass::make_Coord(M, N);
tensors_C.push_back(cutlass::HostTensor<ElementC, LayoutTagC>(c_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagC>::layout_factory(c_coord, stride_factor_C)));
tensors_D.push_back(cutlass::HostTensor<ElementD, LayoutTagD>(c_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagD>::layout_factory(c_coord, stride_factor_D)));
references_D.push_back(cutlass::HostTensor<ElementD, LayoutTagD>(c_coord, cutlass::layout::Affine2Layout_Factory<LayoutTagD>::layout_factory(c_coord, stride_factor_D), false));
EXPECT_TRUE(initialize_tensor(tensors_C[i].host_view(), init_C, seed + 2020));
tensors_C[i].host_view().at({0, 0}) = ElementC(1);
cutlass::reference::host::TensorCopy(references_D[i].host_view(), tensors_C[i].host_view());
tensors_C[i].sync_device();
tensors_D[i].sync_device();
}
auto scalar_coord = cutlass::make_Coord(1);
auto col_vector_coord = cutlass::make_Coord(M);
if constexpr (IsPerRowScaleEnabled) {
alpha.resize(col_vector_coord);
EXPECT_TRUE(initialize_tensor(alpha.host_view(), init_scale, seed + 2023));
if (disable_vector_beta == VectorBeta::DISABLED) {
beta.resize(scalar_coord, false);
cutlass::reference::host::TensorFill(beta.host_view(), beta_);
}
else {
beta.resize(col_vector_coord);
EXPECT_TRUE(initialize_tensor(beta.host_view(), init_scale, seed + 2024));
}
}
else {
alpha.resize(scalar_coord, (use_device_scalars == ScalarLoc::ON_DEVICE));
beta.resize(scalar_coord, (use_device_scalars == ScalarLoc::ON_DEVICE));
cutlass::reference::host::TensorFill(alpha.host_view(), alpha_);
cutlass::reference::host::TensorFill(beta.host_view(), beta_);
}
alpha.sync_device();
beta.sync_device();
if constexpr (IsScaleFactorEnabled) {
scale_A.resize(scalar_coord, (use_device_scalars == ScalarLoc::ON_DEVICE));
scale_B.resize(scalar_coord, (use_device_scalars == ScalarLoc::ON_DEVICE));
scale_C.resize(scalar_coord, (use_device_scalars == ScalarLoc::ON_DEVICE));
scale_D.resize(scalar_coord, (use_device_scalars == ScalarLoc::ON_DEVICE));
EXPECT_TRUE(initialize_tensor(scale_A.host_view(), init_scale, seed + 2023));
EXPECT_TRUE(initialize_tensor(scale_B.host_view(), init_scale, seed + 2024));
EXPECT_TRUE(initialize_tensor(scale_C.host_view(), init_scale, seed + 2025));
EXPECT_TRUE(initialize_tensor(scale_D.host_view(), init_scale, seed + 2026));
scale_A.sync_device();
scale_B.sync_device();
scale_C.sync_device();
scale_D.sync_device();
}
if constexpr (IsBiasEnabled) {
bias.resize(col_vector_coord);
EXPECT_TRUE(initialize_tensor(bias.host_view(), init_bias, seed + 2023));
bias.sync_device();
}
if constexpr (IsDeBiasEnabled) {
bias.resize(col_vector_coord);
reference_dbias.resize(col_vector_coord);
cutlass::reference::host::TensorFill(bias.host_view(), ElementBias(0));
cutlass::reference::host::TensorFill(reference_dbias.host_view(), ElementBias(0));
bias.sync_device();
}
if constexpr (IsAbsMaxEnabledD) {
abs_max_D.resize(scalar_coord);
// ensure in-place device reductions perform their own initialization
cutlass::reference::host::TensorFill(abs_max_D.host_view(),
CUTLASS_STL_NAMESPACE::numeric_limits<ElementAmax>::max());
abs_max_D.sync_device();
reference_abs_max_D.resize(scalar_coord);
cutlass::reference::host::TensorFill(reference_abs_max_D.host_view(), ElementAmax(0));
}
tensors_Aux.clear();
references_Aux.clear();
static_assert(!IsGroupGemm or (IsGroupGemm and !IsAuxInEnabled));
if constexpr (IsAuxInEnabled) {
auto aux_coord = cutlass::make_Coord(M, N);
auto aux_layout = cutlass::layout::Affine2Layout_Factory<LayoutTagD>::layout_factory(aux_coord, typename LayoutTagAux::Stride{});
for (int32_t i = 0; i < L; ++i) {
tensors_Aux.push_back(cutlass::HostTensor<ElementAux , LayoutTagAux>(aux_coord, aux_layout));
EXPECT_TRUE(initialize_tensor(tensors_Aux[i].host_view(), init_C, seed + 2023));
tensors_Aux[i].sync_device();
}
stride_Aux = cutlass::make_cute_packed_stride(cutlass::gemm::TagToStrideC_t<LayoutTagAux>{}, cute::make_shape(M, N, 1));
}
static_assert(!IsGroupGemm or (IsGroupGemm and IsAuxOutEnabled));
if constexpr (IsAuxOutEnabled) {
for (int32_t i = 0; i < L; ++i) {
auto [M, N, K, mock_L] = cute::append<4>(problem_shapes.get_host_problem_shape(i), 1);
auto aux_coord = cutlass::make_Coord(M, N);
auto aux_layout = cutlass::layout::Affine2Layout_Factory<LayoutTagD>::layout_factory(aux_coord, typename LayoutTagAux::Stride{});
tensors_Aux.push_back(cutlass::HostTensor<ElementAux , LayoutTagAux>(aux_coord, aux_layout));
references_Aux.push_back(cutlass::HostTensor<ElementAux , LayoutTagAux>(aux_coord, aux_layout, false));
tensors_Aux[i].sync_device();
}
stride_Aux = cutlass::make_cute_packed_stride(cutlass::gemm::TagToStrideC_t<LayoutTagAux>{}, cute::make_shape(M, N, 1));
if constexpr (IsScaleFactorEnabled) {
scale_Aux.resize(scalar_coord, (use_device_scalars == ScalarLoc::ON_DEVICE));
EXPECT_TRUE(initialize_tensor(scale_Aux.host_view(), init_scale, seed + 2027));
scale_Aux.sync_device();
}
if constexpr (IsAbsMaxEnabledAux) {
abs_max_Aux.resize(scalar_coord);
// ensure in-place device reductions perform their own initialization
cutlass::reference::host::TensorFill(abs_max_Aux.host_view(),
CUTLASS_STL_NAMESPACE::numeric_limits<ElementAmax>::max());
abs_max_Aux.sync_device();
reference_abs_max_Aux.resize(scalar_coord);
cutlass::reference::host::TensorFill(reference_abs_max_Aux.host_view(), ElementAmax(0));
}
}
return true;
}
template <
class Element,
class Layout
>
bool equality_check(
cutlass::TensorView<Element, Layout> const& lhs,
cutlass::TensorView<Element, Layout> const& rhs) const {
// Factors used for calculating relative equality. CUTLASS's relative-equality
// checks in include/cutlass/relatively_equal.h are inspired by
// https://floating-point-gui.de/errors/comparison/. This reference suggests using
// the minimum normal value of a given type as the nonzero_floor.
Element epsilon(static_cast<Element>(0.1f));
Element nonzero_floor(std::numeric_limits<Element>::min());
if constexpr (!cutlass::is_complex<Element>::value) {
if (check_relative_equality == CheckEquality::RELATIVE) {
return cutlass::reference::host::TensorRelativelyEquals(
lhs, rhs, epsilon, nonzero_floor);
}
else {
return cutlass::reference::host::TensorEquals(lhs, rhs);
}
}
else {
return cutlass::reference::host::TensorEquals(lhs, rhs);
}
}
bool compare_reference(
ProblemShapeType problem_shapes,
ElementScalar alpha,
ElementScalar beta,
int batch) {
tensors_D[batch].sync_host();
EXPECT_GT(cutlass::reference::host::TensorNorm(tensors_C[batch].host_view()), 0);
if (tensors_D[batch].size() > 1) {
EXPECT_GT(cutlass::reference::host::TensorNorm(tensors_D[batch].host_view()), 0);
}
if (references_D[batch].size() > 1) {
EXPECT_GT(cutlass::reference::host::TensorNorm(references_D[batch].host_view()), 0);
}
bool passed = equality_check(references_D[batch].host_view(), tensors_D[batch].host_view());
if(!passed) {
std::cout<<"D is incorrect"<<std::endl;
}
if constexpr (IsAbsMaxEnabledD) {
abs_max_D.sync_host();
passed &= equality_check(reference_abs_max_D.host_view(), abs_max_D.host_view());
}
if constexpr (IsDeBiasEnabled) {
bias.sync_host();
EXPECT_GT(cutlass::reference::host::TensorNorm(bias.host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(reference_dbias.host_view()), 0);
passed &= equality_check(reference_dbias.host_view(), bias.host_view());
}
if constexpr (IsAuxOutEnabled) {
tensors_Aux[batch].sync_host();
EXPECT_GT(cutlass::reference::host::TensorNorm(tensors_Aux[batch].host_view()), 0);
EXPECT_GT(cutlass::reference::host::TensorNorm(references_Aux[batch].host_view()), 0);
passed &= equality_check(references_Aux[batch].host_view(), tensors_Aux[batch].host_view());
if(!passed) {
std::cout<<"Aux is incorrect"<<std::endl;
}
if constexpr (IsAbsMaxEnabledAux) {
abs_max_Aux.sync_host();
bool tmp = equality_check(reference_abs_max_Aux.host_view(), abs_max_Aux.host_view());
if(!tmp) {
std::cout<<"AbsMax of Aux is incorrect"<<std::endl;
}
passed &= tmp;
}
}
return passed;
}
void print_tensors(std::ofstream& file, int batch) {
auto coord_0 = cutlass::make_Coord(0);
if constexpr (IsScaleFactorEnabled) {
file
<< ", scale_a: " << scale_A.at(coord_0)
<< ", scale_b: " << scale_B.at(coord_0)
<< ", scale_c: " << scale_C.at(coord_0);
}
if constexpr (IsPerRowScaleEnabled) {
file << "\n\nvalpha = \n" << alpha.host_view();
file << "\n\nvbeta = \n" << beta.host_view();
}
else {
file
<< ", alpha: " << alpha.at(coord_0) << ", beta: " << beta.at(coord_0);
}
file << "\n\n";
if constexpr (IsAbsMaxEnabledD) {
file << "scale_d: " << float(scale_D.at(coord_0));
file << "\nReference abs_max_D :";
file << " " << float(reference_abs_max_D.at(coord_0));
file << "\nComputed abs_max_D :";
file << " " << float(abs_max_D.at(coord_0));
file << "\n\n";
}
if constexpr (IsAbsMaxEnabledAux) {
file << "scale_aux: " << float(scale_Aux.at(coord_0));
file << "\nReference abs_max_Aux :";
file << " " << float(reference_abs_max_Aux.at(coord_0));
file << "\nComputed abs_max_Aux :";
file << " " << float(abs_max_Aux.at(coord_0));
file << "\n\n";
}
if constexpr (IsBiasEnabled) {
file << "\n\nBias = \n" << bias.host_view();
}
if constexpr (IsAuxInEnabled) {
file << "\n\nAux Input = \n" << tensors_Aux[batch].host_view();
}
if constexpr (IsDeBiasEnabled) {
file << "\n\nReference dBias = \n" << reference_dbias.host_view();
file << "\n\nComputed dBias = \n" << bias.host_view();
}
if constexpr (IsAuxOutEnabled) {
file
<< "\n\nReference Aux =\n" << references_Aux[batch].host_view()
<< "\n\nComputed Aux =\n" << tensors_Aux[batch].host_view();
}
file
<< "\nC =\n" << tensors_C[batch].host_view()
<< "\n\nReference =\n" << references_D[batch].host_view()
<< "\n\nComputed =\n" << tensors_D[batch].host_view();
}
Arguments to_args(ProblemShapeType problem_shapes) {
auto coord_0 = cutlass::make_Coord(0);
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(0), 1);
L = max(problem_shapes.groups(), L);
std::vector<ElementC *> ptr_C_host(L);
std::vector<ElementD *> ptr_D_host(L);
for (int32_t i = 0; i < L; ++i) {
ptr_C_host.at(i) = tensors_C[i].device_data();
ptr_D_host.at(i) = tensors_D[i].device_data();
}
device_tensors_C.reset(L);
device_tensors_C.copy_from_host(ptr_C_host.data());
device_tensors_D.reset(L);
device_tensors_D.copy_from_host(ptr_D_host.data());
stride_c_device.reset(problem_shapes.groups());
stride_c_device.copy_from_host(stride_c_host.data());
stride_d_device.reset(problem_shapes.groups());
stride_d_device.copy_from_host(stride_d_host.data());
std::vector<ElementAux *> ptr_Aux_host(L);
if constexpr (IsAuxInEnabled || IsAuxOutEnabled) {
for (int32_t i = 0; i < L; ++i) {
ptr_Aux_host.at(i) = tensors_Aux[i].device_data();
}
device_tensors_Aux.reset(L);
device_tensors_Aux.copy_from_host(ptr_Aux_host.data());
}
Arguments arguments;
if constexpr (IsGroupGemm) {
arguments =
{
{},
device_tensors_C.get(), stride_c_device.get(), device_tensors_D.get(), stride_d_device.get()
};
}
else {
arguments =
{
{},
device_tensors_C.get(), stride_c_host[0], device_tensors_D.get(), stride_d_host[0]
};
}
auto &fusion_args = arguments.thread;
if constexpr (IsLegacy) {
arguments.thread = {
alpha.at(coord_0),
beta.at(coord_0),
alpha.device_data(),
beta.device_data()
};
arguments.ptr_Bias = bias.device_data();
arguments.ptr_T = device_tensors_Aux.get();
}
else {
fusion_args.alpha = alpha.at(coord_0);
fusion_args.beta = beta.at(coord_0);
fusion_args.alpha_ptr = alpha.device_data();
fusion_args.beta_ptr = beta.device_data(); // if disable_vector_beta is true this is nullptr
if constexpr (IsScaleFactorEnabled) {
fusion_args.scale_a = scale_A.at(coord_0);
fusion_args.scale_b = scale_B.at(coord_0);
fusion_args.scale_c = scale_C.at(coord_0);
fusion_args.scale_d = scale_D.at(coord_0);
fusion_args.scale_a_ptr = scale_A.device_data();
fusion_args.scale_b_ptr = scale_B.device_data();
fusion_args.scale_c_ptr = scale_C.device_data();
fusion_args.scale_d_ptr = scale_D.device_data();
}
if constexpr (IsBiasEnabled) {
fusion_args.bias_ptr = bias.device_data();
}
if constexpr (IsDeBiasEnabled) {
fusion_args.dbias_ptr = bias.device_data();
}
// example of how to set kernel activation arguments
// see ActivationFunctor::Arguments in activation.h for definition
// if Arguments doesn't exist then fusion_args.activation is empty
if constexpr (cute::is_same_v<ActivationFunctor, cutlass::epilogue::thread::ScaledGELU_taylor<ElementCompute>>) {
fusion_args.activation.scale = ElementCompute(1);
}
// Treat Clamp as ReLU
if constexpr (cute::is_same_v<ActivationFunctor, cutlass::epilogue::thread::Clamp<ElementCompute>>) {
fusion_args.activation.lower_bound = 0;
fusion_args.activation.upper_bound = std::numeric_limits<ElementCompute>::max();
}
if constexpr (IsAbsMaxEnabledD) {
fusion_args.amax_D_ptr = abs_max_D.device_data();
}
if constexpr (IsAuxInEnabled) {
fusion_args.aux_ptr = device_tensors_Aux.get();
fusion_args.dAux = stride_Aux;
}
if constexpr (IsAuxOutEnabled) {
fusion_args.aux_ptr = device_tensors_Aux.get();
fusion_args.dAux = stride_Aux;
if constexpr (IsScaleFactorEnabled) {
fusion_args.scale_aux = scale_Aux.at(coord_0);
fusion_args.scale_aux_ptr = scale_Aux.device_data();
}
if constexpr (IsAbsMaxEnabledAux) {
fusion_args.amax_aux_ptr = abs_max_Aux.device_data();
}
}
}
return arguments;
}
auto to_host_args(ProblemShapeType problem_shapes, int batch) {
using namespace cute;
//
// Allocate the GEMM workspace
//
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(batch), 1);
auto coord_0 = cutlass::make_Coord(0);
auto C = cute::make_tensor(detail::make_iterator(tensors_C[batch].host_data()),
cute::make_layout(cute::make_shape(M, N, 1), stride_c_host[batch]));
auto D = cute::make_tensor(detail::make_iterator(references_D[batch].host_data()),
cute::make_layout(cute::make_shape(M, N, 1), stride_d_host[batch]));
auto Bias = cute::make_tensor(detail::make_iterator(IsDeBiasEnabled ? reference_dbias.host_data() : bias.host_data()),
cute::make_layout(cute::make_shape(M, cute::_1{})));
auto Aux = cute::make_tensor(detail::make_iterator(IsAuxInEnabled ? tensors_Aux[batch].host_data() : references_Aux[batch].host_data()),
cute::make_layout(cute::make_shape(M, N, 1), stride_Aux));
auto Valpha = cute::make_tensor(detail::make_iterator(alpha.host_data()),
cute::make_layout(cute::make_shape(M, cute::_1{})));
auto Vbeta = cute::make_tensor(detail::make_iterator(beta.host_data()),
cute::make_layout(cute::make_shape(M, cute::_1{})));
cutlass::reference::host::GettEpilogueParams<
ElementScalar,
ElementScalar,
ElementAccumulator,
ElementCompute,
decltype(C),
decltype(D),
decltype(Bias),
decltype(Aux),
decltype(Valpha),
decltype(Vbeta),
ActivationFunctor
> epilogue_params{};
epilogue_params.C = C;
epilogue_params.D = D;
epilogue_params.alpha = alpha.at(coord_0);
epilogue_params.beta = beta.at(coord_0);
if constexpr (IsScaleFactorEnabled) {
epilogue_params.scale_a = scale_A.at(coord_0);
epilogue_params.scale_b = scale_B.at(coord_0);
epilogue_params.scale_c = scale_C.at(coord_0);
epilogue_params.scale_d = scale_D.at(coord_0);
}
if constexpr (IsBiasEnabled or IsDeBiasEnabled) {
epilogue_params.Bias = Bias;
}
if constexpr (IsAbsMaxEnabledD) {
epilogue_params.abs_max_D = reference_abs_max_D.host_data();
}
if constexpr (IsAuxInEnabled) {
epilogue_params.Aux = Aux;
}
if constexpr (IsAuxOutEnabled) {
epilogue_params.Aux = Aux;
if constexpr (IsScaleFactorEnabled) {
epilogue_params.scale_aux = scale_Aux.at(coord_0);
}
if constexpr (IsAbsMaxEnabledAux) {
epilogue_params.abs_max_Aux = reference_abs_max_Aux.host_data();
}
}
if constexpr (IsPerRowScaleEnabled) {
epilogue_params.Valpha = Valpha;
if (disable_vector_beta == VectorBeta::ENABLED) {
epilogue_params.Vbeta = Vbeta;
}
}
return epilogue_params;
}
};
template <
typename Gemm,
template <class T> class ActivationFunctor_ = cutlass::epilogue::thread::Identity,
bool force_legacy_epilogue = false,
typename ElementA = typename Gemm::GemmKernel::ElementA,
typename ElementB = typename Gemm::GemmKernel::ElementB
>
struct TestbedImpl {
// Kernel data types
using ScheduleType = typename Gemm::GemmKernel::CollectiveMainloop::DispatchPolicy::Schedule;
// All Collective MMA operands are defined by HostCollectiveMainloopType based on the schedule type
using HostCollectiveMainloopType = HostCollectiveMainloop<ScheduleType, Gemm, ElementA, ElementB>;
using CollectiveEpilogue = cute::conditional_t<IsDefaultEpilogue<typename Gemm::GemmKernel::CollectiveEpilogue>::value || force_legacy_epilogue,
HostCollectiveDefaultEpilogue<Gemm>,
HostCollectiveEpilogue<Gemm>>;
using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape;
using ElementAccumulator = typename Gemm::GemmKernel::ElementAccumulator;
using ElementCompute = typename ElementComputeType<Gemm, ElementAccumulator>::Type;
using ElementScalar = typename ElementScalarType<Gemm, ElementCompute>::Type;
using LayoutTagA = typename HostCollectiveMainloopType::LayoutTagA;
using LayoutTagB = typename HostCollectiveMainloopType::LayoutTagB;
using LayoutTagC = typename CollectiveEpilogue::LayoutTagC;
using LayoutTagD = typename CollectiveEpilogue::LayoutTagD;
uint32_t sm_count;
// Used to force multi-wave tests for persistent kernel schedules
constexpr static int MaxSmCount = 16;
static constexpr uint64_t kDefaultSeed = 4096;
static constexpr uint32_t mma_promotion_interval = 4;
using RasterOrderOptions = typename cutlass::gemm::kernel::detail::PersistentTileSchedulerSm90::RasterOrderOptions;
using DecompositionMode = typename cutlass::gemm::kernel::detail::PersistentTileSchedulerSm90StreamKParams::DecompositionMode;
HostCollectiveMainloopType collective_mma_inputs;
CollectiveEpilogue collective_epilogue;
static constexpr bool IsGroupGemm = CollectiveEpilogue::IsGroupGemm;
//
// Methods
//
TestbedImpl(
CheckEquality check_relative_equality_ = CheckEquality::EXACT,
ScalarLoc use_device_scalars_ = ScalarLoc::ON_HOST,
VectorBeta disable_vector_beta_ = VectorBeta::DISABLED,
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_scale_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_bias_ = cutlass::Distribution::Uniform,
uint64_t seed_ = kDefaultSeed
): collective_mma_inputs(HostCollectiveMainloopType(check_relative_equality_, init_A_, init_B_, seed_)),
collective_epilogue(CollectiveEpilogue(check_relative_equality_, use_device_scalars_, disable_vector_beta_, init_C_, init_scale_, init_bias_, seed_)) { }
TestbedImpl(
typename LayoutTagA::Stride stride_factor_A_,
typename LayoutTagB::Stride stride_factor_B_,
typename LayoutTagC::Stride stride_factor_C_,
typename LayoutTagD::Stride stride_factor_D_,
CheckEquality check_relative_equality_ = CheckEquality::EXACT,
ScalarLoc use_device_scalars_ = ScalarLoc::ON_HOST,
VectorBeta disable_vector_beta_ = VectorBeta::DISABLED,
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_scale_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_bias_ = cutlass::Distribution::Uniform,
uint64_t seed_ = kDefaultSeed
): collective_mma_inputs(HostCollectiveMainloopType(check_relative_equality_, stride_factor_A_, stride_factor_B_, init_A_, init_B_, seed_)),
collective_epilogue(CollectiveEpilogue(check_relative_equality_, use_device_scalars_, disable_vector_beta_, init_C_, init_scale_, init_bias_, seed_)) { }
/// Initializes data structures
bool initialize(ProblemShapeType problem_shapes, ElementScalar alpha_=1.f, ElementScalar beta_=0.f) {
collective_mma_inputs.initialize(problem_shapes);
collective_epilogue.initialize(problem_shapes, alpha_, beta_);
return true;
}
/// Compares computed reference with device reference and outputs to a file if incorrect
bool compare_reference(
ProblemShapeType problem_shapes,
ElementScalar alpha,
ElementScalar beta,
int batch)
{
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(batch), 1);
bool passed = collective_mma_inputs.compare_reference(problem_shapes, batch);
passed &= collective_epilogue.compare_reference(problem_shapes, alpha, beta, batch);
EXPECT_TRUE(passed);
if (!passed) {
std::stringstream fname;
fname << "error_Gemm_device_"
<< M << "x" << N << "x" << K << "x" << batch << "_"
<< cute::get<0>(typename Gemm::GemmKernel::TileShape{}) << "_"
<< cute::get<1>(typename Gemm::GemmKernel::TileShape{}) << "_"
<< cute::get<2>(typename Gemm::GemmKernel::TileShape{}) << ".txt";
std::ofstream file(fname.str());
file
<< "problem: " << ' ' << M << "x" << N << "x" << K << ", Batch count = " << batch
<< ", alpha: " << alpha << ", beta: " << beta << "\n\n";
collective_mma_inputs.print_tensors(file, batch);
collective_epilogue.print_tensors(file, batch);
}
return passed;
}
/// Verifies the result is a GEMM
bool verify(
ProblemShapeType problem_shapes,
ElementScalar alpha,
ElementScalar beta)
{
using namespace cute;
auto [M, N, K, L] = cute::append<4>(problem_shapes.get_host_problem_shape(0), 1);
L = max(problem_shapes.groups(), L);
bool passed = true;
for (int32_t i = 0; i < L; ++i) {
auto mainloop_params = collective_mma_inputs.to_host_args(problem_shapes, i);
auto epilogue_params = collective_epilogue.to_host_args(problem_shapes, i);
cutlass::reference::host::Gemm3x(mainloop_params, epilogue_params);
passed &= compare_reference(problem_shapes, alpha, beta, i);
}
return passed;
}
/// Determine if the CUDA device is sufficient to run the kernel
bool sufficient() {
//
// Determine SMEM requirements and waive if not satisfied
//
size_t smem_size = static_cast<size_t>(Gemm::GemmKernel::SharedStorageSize);
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDevice() API call failed.");
}
cudaDeviceProp properties;
result = cudaGetDeviceProperties(&properties, device_idx);
this->sm_count = properties.multiProcessorCount;
if (result != cudaSuccess) {
throw std::runtime_error("cudaGetDeviceProperties() failed");
}
if (properties.sharedMemPerBlockOptin < smem_size) {
printf("failed due to smem_size\n");
printf("hardware smem_size: %d, required smem_size: %d\n\n", int(properties.sharedMemPerBlockOptin), int(smem_size));
return false;
}
return true;
}
/// Executes one test
bool run(
ProblemShapeType problem_shapes,
ElementScalar alpha = ElementScalar(1),
ElementScalar beta = ElementScalar(0),
detail::Iterations iterations = detail::Iterations{}
)
{
// Fail test if insufficient CUDA device
if (!sufficient()) {
std::cout << "Test failed due to insufficient CUDA device." << std::endl;
return false;
}
if (!this->initialize(problem_shapes, alpha, beta)) {
std::cerr << "Initialization failed \n";
return false;
}
//
// Initialize the GEMM operator
//
typename Gemm::Arguments arguments;
cutlass::KernelHardwareInfo hw_info;
hw_info.device_id = 0;
this->sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
hw_info.sm_count = this->sm_count;
typename HostCollectiveMainloopType::Arguments mainloop_args;
mainloop_args = collective_mma_inputs.to_args(problem_shapes);
if constexpr (IsGroupGemm) {
arguments =
{
cutlass::gemm::GemmUniversalMode::kGrouped,
problem_shapes,
mainloop_args,
collective_epilogue.to_args(problem_shapes),
hw_info
};
}
else {
arguments =
{
cutlass::gemm::GemmUniversalMode::kArray,
problem_shapes,
mainloop_args,
collective_epilogue.to_args(problem_shapes),
hw_info
};
}
Gemm gemm_op;
size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
cutlass::Status status = gemm_op.can_implement(arguments);
if (status != cutlass::Status::kSuccess) {
cudaError_t error = cudaGetLastError();
std::cerr << "This test is not supported: " << cudaGetErrorString(error) << "\n";
return false;
}
//
// Run the GEMM
//
cudaError_t result;
status = gemm_op.initialize(arguments, workspace.get());
status = gemm_op.run();
result = cudaDeviceSynchronize();
if (result != cudaSuccess) {
EXPECT_EQ(result, cudaSuccess) << "Error at Kernel Sync.";
return false;
}
EXPECT_TRUE(status == cutlass::Status::kSuccess) << to_string(status);
//
// Verify
//
bool passed = this->verify(problem_shapes, alpha, beta);
if (!passed) {
std::cout << "Error : Failed : with alpha: " << alpha << ", beta: " << beta
<< "\n";
}
return passed;
}
};
} // namespace detail
/////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename Gemm,
template <class T> class ActivationFunctor = cutlass::epilogue::thread::Identity,
bool force_legacy_epilogue = false,
typename ElementA = typename Gemm::GemmKernel::ElementA,
typename ElementB = typename Gemm::GemmKernel::ElementB
>
struct Testbed3x {
using TestBedImpl = typename detail::TestbedImpl<
Gemm,
ActivationFunctor,
force_legacy_epilogue,
ElementA,
ElementB
>;
using Kernel = typename Gemm::GemmKernel;
using Epilogue = typename Gemm::GemmKernel::CollectiveEpilogue;
using ElementAccumulator = typename TestBedImpl::ElementAccumulator;
using ElementCompute = typename TestBedImpl::ElementCompute;
using ElementScalar = typename TestBedImpl::ElementScalar;
using RasterOrderOptions = typename cutlass::gemm::kernel::detail::PersistentTileSchedulerSm90::RasterOrderOptions;
using DecompositionMode = typename cutlass::gemm::kernel::detail::PersistentTileSchedulerSm90StreamKParams::DecompositionMode;
static constexpr bool IsGroupGemm = TestBedImpl::IsGroupGemm;
// Detail Implementation
TestBedImpl impl_;
//
// Methods
//
Testbed3x(
CheckEquality check_relative_equality_ = CheckEquality::EXACT,
ScalarLoc use_device_scalars_ = ScalarLoc::ON_DEVICE,
VectorBeta disable_vector_beta_ = VectorBeta::DISABLED,
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_scale_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_bias_ = cutlass::Distribution::Uniform,
uint64_t seed_ = TestBedImpl::kDefaultSeed)
: impl_(check_relative_equality_, use_device_scalars_, disable_vector_beta_, init_A_, init_B_, init_C_, init_scale_, init_bias_, seed_) {}
/// Executes one test
bool run(
typename TestBedImpl::ProblemShapeType problem_shapes,
ElementScalar alpha = ElementScalar(1),
ElementScalar beta = ElementScalar(0),
detail::Iterations iterations = detail::Iterations{}
)
{
return impl_.run(
problem_shapes, alpha, beta, iterations);
}
};
template <
typename Gemm,
template <class T> class ActivationFunctor = cutlass::epilogue::thread::Identity
>
bool TestAll(double alpha = 1.0, double beta = 0.0, CheckEquality check_relative_equality = CheckEquality::RELATIVE) {
using ElementScalar = typename Gemm::EpilogueOutputOp::ElementScalar;
using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape;
Testbed3x<Gemm, ActivationFunctor> testbed(check_relative_equality, ScalarLoc::ON_DEVICE, VectorBeta::DISABLED);
int max_alignment = std::max(Gemm::kAlignmentA, Gemm::kAlignmentB);
std::vector<int> problem_size_m = {max_alignment, 512 - 3 * max_alignment};
std::vector<int> problem_size_n = {max_alignment, 512 - 2 * max_alignment};
constexpr int Stages = Gemm::GemmKernel::DispatchPolicy::Stages;
constexpr int TileShapeK = cute::size<2>(typename Gemm::GemmKernel::TileShape{});
std::vector<int> problem_size_k = {max_alignment, TileShapeK * (Stages + 1) - max_alignment};
int batches[] = {5, 10};
bool passed = true;
for (int batch : batches) {
for (int m : problem_size_m) {
for (int n : problem_size_n) {
for (int k : problem_size_k) {
if constexpr (Testbed3x<Gemm, ActivationFunctor>::IsGroupGemm) {
std::vector<typename ProblemShapeType::UnderlyingProblemShape> problem_sizes_host;
cutlass::DeviceAllocation<typename ProblemShapeType::UnderlyingProblemShape> problem_sizes_device;
for (int i = 0; i < batch; ++i) {
problem_sizes_host.push_back({m, n, k});
}
problem_sizes_device.reset(problem_sizes_host.size());
problem_sizes_device.copy_from_host(problem_sizes_host.data());
passed = testbed.run(
ProblemShapeType{static_cast<int>(problem_sizes_host.size()), problem_sizes_device.get(), problem_sizes_host.data()},
cutlass::from_real<ElementScalar>(alpha),
cutlass::from_real<ElementScalar>(beta)
);
}
else {
ProblemShapeType problem_size{{m, n, k, batch}};
passed = testbed.run(
problem_size,
cutlass::from_real<ElementScalar>(alpha),
cutlass::from_real<ElementScalar>(beta)
);
}
if (!passed) {
std::cout << __FILE__ << ':' << __LINE__ << " : GEMM MNKL " << m << " " << n << " " << k << " " << batch << " FAILED.\n";
return false;
}
} // k
} // n
} // m
} // batch
return passed;
}
} // namespace device
} // namespace gemm
} // namespace test
/////////////////////////////////////////////////////////////////////////////////////////////////