cutlass/include/cutlass/gemm/kernel/sm90_gemm_warpspecialized_cooperative.hpp
Vijay Thakkar be60a0b272
CUTLASS 3.5.1 (#1623)
* CUTLASS 3.5.1

* updates, optimizations, fixes
2024-07-29 08:46:24 -04:00

500 lines
22 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/fast_math.h"
#include "cutlass/kernel_hardware_info.hpp"
#include "cute/arch/cluster_sm90.hpp"
#include "cutlass/arch/reg_reconfig.h"
#include "cutlass/arch/mma_sm90.h"
#include "cutlass/epilogue/collective/detail.hpp"
#include "cutlass/gemm/gemm.h"
#include "cutlass/gemm/dispatch_policy.hpp"
#include "cutlass/gemm/kernel/tile_scheduler.hpp"
#include "cutlass/pipeline/pipeline.hpp"
#include "cute/tensor.hpp"
///////////////////////////////////////////////////////////////////////////////
namespace cutlass::gemm::kernel {
///////////////////////////////////////////////////////////////////////////////
template <
class ProblemShape_,
class CollectiveMainloop_,
class CollectiveEpilogue_,
class TileScheduler_
>
class GemmUniversal<
ProblemShape_,
CollectiveMainloop_,
CollectiveEpilogue_,
TileScheduler_,
cute::enable_if_t<cute::is_base_of_v<KernelCpAsyncWarpSpecializedCooperative, typename CollectiveMainloop_::DispatchPolicy::Schedule>>>
{
public:
//
// Type Aliases
//
using ProblemShape = ProblemShape_;
static_assert(cute::rank(ProblemShape{}) == 3 or cute::rank(ProblemShape{}) == 4,
"ProblemShape{} should be <M,N,K> or <M,N,K,L>");
// Mainloop derived types
using CollectiveMainloop = CollectiveMainloop_;
using TileShape = typename CollectiveMainloop::TileShape;
using TiledMma = typename CollectiveMainloop::TiledMma;
using ArchTag = typename CollectiveMainloop::ArchTag;
using ElementA = typename CollectiveMainloop::ElementA;
using StrideA = typename CollectiveMainloop::StrideA;
using ElementB = typename CollectiveMainloop::ElementB;
using StrideB = typename CollectiveMainloop::StrideB;
using DispatchPolicy = typename CollectiveMainloop::DispatchPolicy;
using ElementAccumulator = typename CollectiveMainloop::ElementAccumulator;
using ClusterShape = typename DispatchPolicy::ClusterShape;
using MainloopArguments = typename CollectiveMainloop::Arguments;
using MainloopParams = typename CollectiveMainloop::Params;
static_assert(ArchTag::kMinComputeCapability >= 90);
// Epilogue derived types
using CollectiveEpilogue = CollectiveEpilogue_;
using ElementC = typename CollectiveEpilogue::ElementC;
using StrideC = typename CollectiveEpilogue::StrideC;
using ElementD = typename CollectiveEpilogue::ElementD;
using StrideD = typename CollectiveEpilogue::StrideD;
using EpilogueArguments = typename CollectiveEpilogue::Arguments;
using EpilogueParams = typename CollectiveEpilogue::Params;
using TileSchedulerTag = TileScheduler_;
using TileScheduler = typename detail::TileSchedulerSelector<
TileScheduler_, ArchTag, TileShape, ClusterShape>::Scheduler;
using TileSchedulerArguments = typename TileScheduler::Arguments;
using TileSchedulerParams = typename TileScheduler::Params;
using GmemTiledCopyA = typename CollectiveMainloop::GmemTiledCopyA;
using GmemTiledCopyB = typename CollectiveMainloop::GmemTiledCopyB;
static_assert(cute::size(GmemTiledCopyA{}) == cute::size(GmemTiledCopyB{}), "Number of threads in A/B tiled copies must be the same");
static constexpr uint32_t NumLoadWarpGroups = cute::size(GmemTiledCopyA{}) / NumThreadsPerWarpGroup;
static constexpr uint32_t NumMmaWarpGroups = cute::size(TiledMma{}) / NumThreadsPerWarpGroup;
static constexpr uint32_t NumWarpGroups = NumLoadWarpGroups + NumMmaWarpGroups;
static_assert(NumWarpGroups == 2 || NumWarpGroups == 3, "Number of warp groups must be 2 or 3 for good performance.");
static constexpr uint32_t MaxThreadsPerBlock = NumWarpGroups * NumThreadsPerWarpGroup;
static constexpr uint32_t MinBlocksPerMultiprocessor = 1;
// Kernel level shared memory storage
struct SharedStorage {
struct TensorStorage : cute::aligned_struct<128> {
using MainloopTensorStorage = typename CollectiveMainloop::TensorStorage;
using EpilogueTensorStorage = typename CollectiveEpilogue::TensorStorage;
MainloopTensorStorage mainloop;
EpilogueTensorStorage epilogue;
} tensors;
struct PipelineStorage : cute::aligned_struct<16> {
using MainloopPipelineStorage = typename CollectiveMainloop::PipelineStorage;
using EpiLoadPipelineStorage = typename CollectiveEpilogue::PipelineStorage;
alignas(16) MainloopPipelineStorage mainloop;
alignas(16) EpiLoadPipelineStorage epi_load;
} pipelines;
};
static constexpr int SharedStorageSize = sizeof(SharedStorage);
// Device side arguments
struct Arguments {
GemmUniversalMode mode{};
ProblemShape problem_shape{};
MainloopArguments mainloop{};
EpilogueArguments epilogue{};
KernelHardwareInfo hw_info{};
TileSchedulerArguments scheduler{};
};
// Kernel entry point API
struct Params {
GemmUniversalMode mode{};
ProblemShape problem_shape{};
MainloopParams mainloop{};
EpilogueParams epilogue{};
KernelHardwareInfo hw_info{};
TileSchedulerParams scheduler{};
};
//
// Methods
//
// Convert to underlying arguments. In this case, a simple copy for the aliased type.
static
Params
to_underlying_arguments(Arguments const& args, void* workspace) {
CUTLASS_TRACE_HOST("to_underlying_arguments():");
auto problem_shape = args.problem_shape;
if constexpr (detail::Has_SwapAB_v<CollectiveMainloop>) {
// swap M/N
get<0>(problem_shape) = get<1>(args.problem_shape);
get<1>(problem_shape) = get<0>(args.problem_shape);
}
auto problem_shape_MNKL = append<4>(problem_shape, 1);
// Get SM count if needed, otherwise use user supplied SM count
int sm_count = args.hw_info.sm_count;
if (sm_count <= 0) {
CUTLASS_TRACE_HOST(" WARNING: Arguments do not include a valid SM count.\n"
" For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
sm_count = KernelHardwareInfo::query_device_multiprocessor_count(args.hw_info.device_id);
}
CUTLASS_TRACE_HOST("to_underlying_arguments(): Setting persistent grid SM count to " << sm_count);
KernelHardwareInfo hw_info{args.hw_info.device_id, sm_count};
TileSchedulerParams scheduler = TileScheduler::to_underlying_arguments(
problem_shape_MNKL, TileShape{}, ClusterShape{}, hw_info, args.scheduler, workspace);
return {
args.mode,
problem_shape,
CollectiveMainloop::to_underlying_arguments(args.problem_shape, args.mainloop, workspace),
CollectiveEpilogue::to_underlying_arguments(args.problem_shape, args.epilogue, workspace),
hw_info,
scheduler
};
}
static bool
can_implement(Arguments const& args) {
bool implementable = (args.mode == GemmUniversalMode::kGemm) or
(args.mode == GemmUniversalMode::kBatched && cute::rank(ProblemShape{}) == 4);
if (!implementable) {
CUTLASS_TRACE_HOST(" CAN IMPLEMENT: Arguments or Problem Shape don't meet the requirements.\n");
return implementable;
}
implementable &= CollectiveMainloop::can_implement(args.problem_shape, args.mainloop);
implementable &= CollectiveEpilogue::can_implement(args.problem_shape, args.epilogue);
implementable &= TileScheduler::can_implement(args.scheduler);
return implementable;
}
static
size_t
get_workspace_size(Arguments const& args) {
TileScheduler t;
return t.template get_workspace_size<ProblemShape, ElementAccumulator>(
args.scheduler, args.problem_shape, args.hw_info, NumMmaWarpGroups);
}
static
cutlass::Status
initialize_workspace(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr,
CudaHostAdapter* cuda_adapter = nullptr) {
TileScheduler t;
return t.template initialize_workspace<ProblemShape, ElementAccumulator>(
args.scheduler, workspace, stream, args.problem_shape, args.hw_info, NumMmaWarpGroups, 1, cuda_adapter);
}
// Computes the kernel launch grid shape based on runtime parameters
static dim3
get_grid_shape(Params const& params) {
// Given device SM count, set grid size s.t. we do not launch more thread blocks than we can run concurrently
TileSchedulerArguments args{};
if constexpr (!std::is_const_v<decltype(args.max_swizzle_size)>) {
args.max_swizzle_size = 1 << params.scheduler.log_swizzle_size_;
}
return TileScheduler::get_grid_shape(params.problem_shape, TileShape{}, ClusterShape{}, params.hw_info, args);
}
static dim3
get_block_shape() {
return dim3(MaxThreadsPerBlock, 1, 1);
}
CUTLASS_DEVICE
void
operator()(Params const& params, char* smem_buf) {
using namespace cute;
using X = Underscore;
// Any Tensor Op MMA Atom in the WGMMA ISA is arch conditional to sm90a.
#if ! defined(__CUDA_ARCH_FEAT_SM90_ALL)
printf("ERROR : Arch conditional MMA instruction used without targeting sm90a compute capability. Aborting.\n");
#else
static_assert(cute::rank(StrideA{}) == 3, "StrideA must be rank-3: [M, K, L]. If batch mode is not needed, set L stride to Int<0>.");
static_assert(cute::rank(StrideB{}) == 3, "StrideB must be rank-3: [N, K, L]. If batch mode is not needed, set L stride to Int<0>.");
static_assert(cute::rank(StrideC{}) == 3, "StrideC must be rank-3: [M, N, L]. If batch mode is not needed, set L stride to Int<0>.");
static_assert(cute::rank(StrideD{}) == 3, "StrideD must be rank-3: [M, N, L]. If batch mode is not needed, set L stride to Int<0>.");
/* In the Cooperative kernel, one or multiple Consumers collaborate on the same tile */
enum class WarpGroupRole {
Producer = 0,
Consumer = 1,
};
// Kernel level shared memory storage
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(smem_buf);
int thread_idx = int(threadIdx.x);
int mma_thread_idx = thread_idx % size(TiledMma{});
int warp_group_thread_idx = thread_idx % NumThreadsPerWarpGroup;
int warp_group_idx = canonical_warp_group_idx();
CUTLASS_ASSERT(warp_group_idx < NumWarpGroups);
WarpGroupRole warp_group_role = warp_group_idx < NumLoadWarpGroups ? WarpGroupRole::Producer : WarpGroupRole::Consumer;
// Mainloop Load pipeline
using MainloopPipeline = typename CollectiveMainloop::MainloopPipeline;
typename MainloopPipeline::Params mainloop_pipeline_params;
if (warp_group_role == WarpGroupRole::Producer) {
mainloop_pipeline_params.role = MainloopPipeline::ThreadCategory::Producer;
}
if (warp_group_role == WarpGroupRole::Consumer) {
mainloop_pipeline_params.role = MainloopPipeline::ThreadCategory::Consumer;
}
mainloop_pipeline_params.producer_arv_count = NumLoadWarpGroups * NumThreadsPerWarpGroup;
mainloop_pipeline_params.consumer_arv_count = NumMmaWarpGroups * NumThreadsPerWarpGroup;
MainloopPipeline mainloop_pipeline(shared_storage.pipelines.mainloop, mainloop_pipeline_params);
// Epilogue Load pipeline
using EpiLoadPipeline = typename CollectiveEpilogue::LoadPipeline;
typename EpiLoadPipeline::Params epi_load_pipeline_params;
if (warp_group_role == WarpGroupRole::Producer) {
epi_load_pipeline_params.role = EpiLoadPipeline::ThreadCategory::Producer;
}
if (warp_group_role == WarpGroupRole::Consumer) {
epi_load_pipeline_params.role = EpiLoadPipeline::ThreadCategory::Consumer;
}
epi_load_pipeline_params.producer_arv_count = NumLoadWarpGroups * NumThreadsPerWarpGroup;
epi_load_pipeline_params.consumer_arv_count = NumMmaWarpGroups * NumThreadsPerWarpGroup;
EpiLoadPipeline epi_load_pipeline(shared_storage.pipelines.epi_load, epi_load_pipeline_params);
// Epilogue Store pipeline
using EpiStorePipeline = typename CollectiveEpilogue::StorePipeline;
typename EpiStorePipeline::Params epi_store_pipeline_params;
epi_store_pipeline_params.always_wait = true;
EpiStorePipeline epi_store_pipeline(epi_store_pipeline_params);
// Initialize starting pipeline states for the collectives
// Epilogue store pipe is producer-only (consumer is TMA unit, waits via scoreboarding)
typename CollectiveMainloop::PipelineState mainloop_pipe_consumer_state;
typename CollectiveEpilogue::LoadPipelineState epi_load_pipe_consumer_state;
// For the DMA Load (producer) we start with an opposite phase
// i.e., we skip all waits since we know that the buffer is indeed empty
PipelineState mainloop_pipe_producer_state = cutlass::make_producer_start_state<MainloopPipeline>();
PipelineState epi_load_pipe_producer_state = cutlass::make_producer_start_state<EpiLoadPipeline>();
PipelineState epi_store_pipe_producer_state = cutlass::make_producer_start_state<EpiStorePipeline>();
// Separate out problem shape for convenience
// Optionally append 1s until problem shape is rank-4 in case its is only rank-3 (MNK)
auto problem_shape_MNKL = append<4>(params.problem_shape, Int<1>{});
auto M = get<0>(problem_shape_MNKL);
auto N = get<1>(problem_shape_MNKL);
auto K = get<2>(problem_shape_MNKL);
auto L = get<3>(problem_shape_MNKL);
// Represent the full tensors
Tensor mA_mkl = make_tensor(make_gmem_ptr(params.mainloop.ptr_A), make_shape(M,K,L), params.mainloop.dA); //(m,k,l)
Tensor mB_nkl = make_tensor(make_gmem_ptr(params.mainloop.ptr_B), make_shape(N,K,L), params.mainloop.dB); //(n,k,l)
// Get the appropriate blocks for this thread block -- potential for thread block locality
TiledMma tiled_mma;
auto blk_shape = TileShape{}; // (BLK_M,BLK_N,BLK_K)
// Make tiled views, defer the slice
Tensor gA_mkl = local_tile(mA_mkl, blk_shape, make_coord(_,_,_), Step<_1, X,_1>{}); // (BLK_M,BLK_K,m,k,l)
Tensor gB_nkl = local_tile(mB_nkl, blk_shape, make_coord(_,_,_), Step< X,_1,_1>{}); // (BLK_N,BLK_K,n,k,l)
TileScheduler scheduler{params.scheduler};
auto work_tile_info = scheduler.initial_work_tile_info(ClusterShape{});
// In a warp specialized kernel, collectives expose data movement and compute operations separately
CollectiveMainloop collective_mainloop;
CollectiveEpilogue collective_epilogue{params.epilogue, shared_storage.tensors.epilogue};
// Wait for all threads in the thread block
__syncthreads();
if (warp_group_role == WarpGroupRole::Producer) {
while (work_tile_info.is_valid()) {
// Compute m_coord, n_coord, l_coord with the post-tiled m-shape and n-shape
auto m_coord = idx2crd(work_tile_info.M_idx, shape<2>(gA_mkl));
auto n_coord = idx2crd(work_tile_info.N_idx, shape<2>(gB_nkl));
auto l_coord = idx2crd(work_tile_info.L_idx, shape<4>(gB_nkl));
auto blk_coord = make_coord(m_coord, n_coord, _, l_coord);
// Slice with our work tile coordinates to construct mainloop tensor views
Tensor gA = gA_mkl(_,_,m_coord,_,l_coord); // (BLK_M,BLK_K,k)
Tensor gB = gB_nkl(_,_,n_coord,_,l_coord); // (BLK_N,BLK_K,k)
// Get the number of K tiles to compute for this work as well as the starting K tile offset of the work.
auto work_k_tile_count = TileScheduler::get_work_k_tile_count(work_tile_info, problem_shape_MNKL, blk_shape);
auto work_k_tile_start = TileScheduler::get_work_k_tile_start(work_tile_info);
auto k_tile_iter = cute::make_coord_iterator(idx2crd(work_k_tile_start, shape<2>(gA)), shape<2>(gA));
// Compute tile residues for predication
auto m_max_coord = M - size<0>(gA) * get<0>(blk_coord); // M - BLK_M * m_coord
auto n_max_coord = N - size<0>(gB) * get<1>(blk_coord); // N - BLK_N * n_coord
auto k_residue = K - size<1>(gA) * size<2>(gA); // K - BLK_K * k_coord_max
auto residue_mnk = make_tuple(m_max_coord, n_max_coord, k_residue);
collective_mainloop.load(
mainloop_pipeline,
mainloop_pipe_producer_state,
gA,
gB,
k_tile_iter, work_k_tile_count,
residue_mnk,
thread_idx,
shared_storage.tensors.mainloop
);
// Update starting pipeline state for the next tile
mainloop_pipe_producer_state.advance(work_k_tile_count);
if (TileScheduler::compute_epilogue(work_tile_info, params.scheduler) &&
collective_epilogue.is_producer_load_needed()) {
epi_load_pipe_producer_state =
collective_epilogue.load(
epi_load_pipeline,
epi_load_pipe_producer_state,
problem_shape_MNKL,
blk_shape,
blk_coord,
tiled_mma,
warp_group_thread_idx,
shared_storage.tensors.epilogue
);
}
// Get next work tile
work_tile_info = scheduler.fetch_next_work(work_tile_info);
} // Scheduler work fetch loop
// Make sure all Consumer Warp Groups have been waited upon
collective_mainloop.load_tail(mainloop_pipeline, mainloop_pipe_producer_state);
if (collective_epilogue.is_producer_load_needed()) {
collective_epilogue.load_tail(epi_load_pipeline, epi_load_pipe_producer_state);
}
} // Producer Warp Group End
else if (warp_group_role == WarpGroupRole::Consumer) {
bool do_store_tail = false;
while (work_tile_info.is_valid()) {
// Compute m_coord, n_coord, l_coord with the post-tiled m-shape and n-shape
auto m_coord = idx2crd(work_tile_info.M_idx, shape<2>(gA_mkl));
auto n_coord = idx2crd(work_tile_info.N_idx, shape<2>(gB_nkl));
auto l_coord = idx2crd(work_tile_info.L_idx, shape<4>(gB_nkl));
auto blk_coord = make_coord(m_coord, n_coord, _, l_coord);
auto work_k_tile_count = TileScheduler::get_work_k_tile_count(work_tile_info, problem_shape_MNKL, blk_shape);
// Allocate the the accumulators for the (M,N) blk_shape
//
// MSVC CTAD breaks if we say "Tensor" here, so we use "auto" instead.
auto accumulators = partition_fragment_C(tiled_mma, take<0,2>(blk_shape)); // (MMA,MMA_M,MMA_N)
collective_mainloop.mma(
mainloop_pipeline,
mainloop_pipe_consumer_state,
accumulators,
work_k_tile_count,
mma_thread_idx,
shared_storage.tensors.mainloop,
params.mainloop
);
// Make sure the math instructions are done and free buffers before entering the epilogue
collective_mainloop.mma_tail(
mainloop_pipeline,
mainloop_pipe_consumer_state,
work_k_tile_count
);
// Update starting mainloop pipeline state for the next tile
mainloop_pipe_consumer_state.advance(work_k_tile_count);
// Index of warp group within consumer warp groups
int consumer_warp_group_idx = canonical_warp_group_idx() - NumLoadWarpGroups;
// Perform reduction across splits, if needed
TileScheduler::fixup(
params.scheduler, work_tile_info, accumulators, NumMmaWarpGroups, consumer_warp_group_idx);
if (TileScheduler::compute_epilogue(work_tile_info, params.scheduler)) {
// Epilogue and write to gD
auto [epi_load_pipe_consumer_state_next, epi_store_pipe_producer_state_next] =
collective_epilogue.store(
epi_load_pipeline,
epi_load_pipe_consumer_state,
epi_store_pipeline,
epi_store_pipe_producer_state,
problem_shape_MNKL,
blk_shape,
blk_coord,
accumulators,
tiled_mma,
mma_thread_idx,
shared_storage.tensors.epilogue
);
epi_load_pipe_consumer_state = epi_load_pipe_consumer_state_next;
epi_store_pipe_producer_state = epi_store_pipe_producer_state_next;
do_store_tail = true;
}
// Get next work tile
work_tile_info = scheduler.fetch_next_work(work_tile_info);
} // Scheduler work fetch loop
if (do_store_tail) {
collective_epilogue.store_tail(
epi_load_pipeline,
epi_load_pipe_consumer_state,
epi_store_pipeline,
epi_store_pipe_producer_state
);
}
} // Consumer Warp Groups End
#endif
}
};
///////////////////////////////////////////////////////////////////////////////
} // namespace cutlass::gemm::kernel