163 lines
6.0 KiB
C++
163 lines
6.0 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include <curand_kernel.h>
|
|
|
|
#include "cutlass/cutlass.h"
|
|
|
|
namespace cutlass {
|
|
namespace reference {
|
|
namespace device {
|
|
namespace kernel {
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Kernel to initialize tensor to uniform random distribution
|
|
template <typename T>
|
|
__global__ void TensorInitializeUniform(
|
|
Distribution dist, int64_t seed, int dim_contiguous, int dim_strided, T *tensor, int ldm) {
|
|
__shared__ curandState_t rng_state[1024];
|
|
|
|
uint64_t gtid = threadIdx.x + blockIdx.x * blockDim.x + blockIdx.y * gridDim.x * blockDim.x;
|
|
|
|
curand_init(seed, gtid, 0, &rng_state[threadIdx.x]);
|
|
|
|
int c_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int s_idx = blockIdx.y * blockDim.x;
|
|
|
|
tensor += s_idx * ldm + c_idx;
|
|
|
|
for (int s_offset = 0; s_offset < blockDim.x; ++s_offset, ++s_idx) {
|
|
if (s_idx < dim_strided && c_idx < dim_contiguous) {
|
|
double range = dist.uniform.max - dist.uniform.min;
|
|
|
|
double rnd = curand_uniform(&rng_state[threadIdx.x]);
|
|
|
|
rnd = dist.uniform.min + range * rnd;
|
|
|
|
// Random values are cast to integer after scaling by a power of two to facilitate error
|
|
// testing
|
|
if (dist.int_scale >= 0) {
|
|
rnd = double(int(rnd * double(1 << dist.int_scale)));
|
|
*tensor = T(rnd / double(1 << dist.int_scale));
|
|
} else {
|
|
*tensor = T(rnd);
|
|
}
|
|
|
|
tensor += ldm;
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Kernel to initialize tensor to uniform distribution
|
|
template <typename T>
|
|
__global__ void TensorInitializeGaussian(
|
|
Distribution dist, int64_t seed, int dim_contiguous, int dim_strided, T *tensor, int ldm) {
|
|
__shared__ curandState_t rng_state[1024];
|
|
|
|
uint64_t gtid = threadIdx.x + blockIdx.x * blockDim.x + blockIdx.y * gridDim.x * blockDim.x;
|
|
|
|
curand_init(seed, gtid, 0, &rng_state[threadIdx.x]);
|
|
|
|
int c_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int s_idx = blockIdx.y * blockDim.x;
|
|
|
|
tensor += s_idx * ldm + c_idx;
|
|
|
|
for (int s_offset = 0; s_offset < blockDim.x; ++s_offset, ++s_idx) {
|
|
if (s_idx < dim_strided && c_idx < dim_contiguous) {
|
|
// Random values are cast to integer after scaling by a power of two to facilitate error
|
|
// testing
|
|
|
|
double rnd = curand_normal(&rng_state[threadIdx.x]);
|
|
|
|
rnd = dist.gaussian.mean + dist.gaussian.stddev * rnd;
|
|
|
|
if (dist.int_scale >= 0) {
|
|
rnd = double(int(rnd * double(1 << dist.int_scale)));
|
|
*tensor = T(rnd / double(1 << dist.int_scale));
|
|
} else {
|
|
*tensor = T(rnd);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Kernel to initialize tensor to an identity matrix
|
|
template <typename T>
|
|
__global__ void TensorInitializeLinear(
|
|
Distribution dist, int64_t seed, int dim_contiguous, int dim_strided, T *tensor, int ldm) {
|
|
__shared__ curandState_t rng_state[1024];
|
|
|
|
uint64_t gtid = threadIdx.x + blockIdx.x * blockDim.x + blockIdx.y * gridDim.x * blockDim.x;
|
|
|
|
curand_init(seed, gtid, 0, &rng_state[threadIdx.x]);
|
|
|
|
int c_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int s_idx = blockIdx.y * blockDim.x;
|
|
|
|
tensor += s_idx * ldm + c_idx;
|
|
|
|
for (int s_offset = 0; s_offset < blockDim.x; ++s_offset, ++s_idx) {
|
|
if (s_idx < dim_strided && c_idx < dim_contiguous) {
|
|
*tensor =
|
|
dist.linear.offset + dist.linear.delta_row * c_idx + dist.linear.delta_column * s_idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Kernel to initialize tensor to an identity matrix
|
|
template <typename T>
|
|
__global__ void TensorInitializeIdentity(
|
|
Distribution dist, int64_t seed, int dim_contiguous, int dim_strided, T *tensor, int ldm) {
|
|
__shared__ curandState_t rng_state[1024];
|
|
|
|
uint64_t gtid = threadIdx.x + blockIdx.x * blockDim.x + blockIdx.y * gridDim.x * blockDim.x;
|
|
|
|
curand_init(seed, gtid, 0, &rng_state[threadIdx.x]);
|
|
|
|
int c_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
|
int s_idx = blockIdx.y * blockDim.x;
|
|
|
|
tensor += s_idx * ldm + c_idx;
|
|
|
|
for (int s_offset = 0; s_offset < blockDim.x; ++s_offset, ++s_idx) {
|
|
if (s_idx < dim_strided && c_idx < dim_contiguous) {
|
|
*tensor = (c_idx == s_idx ? T(1) : T(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace kernel
|
|
} // namespace device
|
|
} // namespace reference
|
|
} // namespace cutlass
|