cutlass/include/cute/container/array_subbyte.hpp
Vijay Thakkar 277bd6e537
CUTLASS 3.0.0 (#786)
* CUTLASS 3.0.0
2023-01-23 20:55:28 -05:00

614 lines
15 KiB
C++

/***************************************************************************************************
* Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Statically sized array of elements that accommodates subbyte trivial types
in a packed storage.
*/
#pragma once
#include <cute/config.hpp>
#include <cute/numeric/int.hpp> // sizeof_bits
namespace cute
{
////////////////////////////////////////////////////////////////////////////////////////////////////
/// Statically sized array for any data type
template <class T, std::size_t N>
class array_subbyte
{
public:
/// Number of total bits in the array
static constexpr int kSizeBits = sizeof_bits<T>::value * N;
/// Storage type
using Storage = typename std::conditional<
(kSizeBits % 32) == 0,
uint32_t,
typename std::conditional<
(kSizeBits % 16) == 0,
uint16_t,
uint8_t
>::type
>::type;
/// Number of logical elements per stored object
static constexpr int kElementsPerStoredItem = sizeof_bits<Storage>::value / sizeof_bits<T>::value;
/// Number of storage elements
static constexpr std::size_t kStorageElements = (N + kElementsPerStoredItem - 1) / kElementsPerStoredItem;
/// Bitmask for covering one item
static constexpr Storage bit_mask_ = ((Storage(1) << sizeof_bits<T>::value) - 1);
//
// C++ standard members with reference and iterator types omitted
//
using value_type = T;
using pointer = value_type*;
using const_pointer = value_type const*;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
//
// References
//
/// Reference object inserts or extracts sub-byte items
class reference {
/// Pointer to storage element
Storage* ptr_;
/// Index into elements packed into Storage object
int idx_;
public:
/// Default ctor
CUTE_HOST_DEVICE constexpr
reference() : ptr_(nullptr), idx_(0) {}
/// Ctor
CUTE_HOST_DEVICE constexpr
reference(Storage* ptr, int idx = 0) : ptr_(ptr), idx_(idx) {}
/// Assignment
CUTE_HOST_DEVICE constexpr
reference& operator=(T x) {
Storage item = (reinterpret_cast<Storage const&>(x) & bit_mask_);
Storage kUpdateMask = Storage(~(bit_mask_ << (idx_ * sizeof_bits<T>::value)));
*ptr_ = Storage((*ptr_ & kUpdateMask) | (item << (idx_ * sizeof_bits<T>::value)));
return *this;
}
CUTE_HOST_DEVICE constexpr
T get() const {
Storage item = Storage((*ptr_ >> (idx_ * sizeof_bits<T>::value)) & bit_mask_);
return reinterpret_cast<T const&>(item);
}
/// Extract to type T -- disable if T == bool
template <class U = T, __CUTE_REQUIRES(not std::is_same<U,bool>::value)>
CUTE_HOST_DEVICE constexpr
operator T() const {
return get();
}
// Extract to bool -- potentially faster impl
CUTE_HOST_DEVICE constexpr
operator bool() const {
return bool((*ptr_) & (bit_mask_ << (idx_ * sizeof_bits<T>::value)));
}
/// Explicit cast to int
CUTE_HOST_DEVICE constexpr
explicit operator int() const {
return int(get());
}
/// Explicit cast to float
CUTE_HOST_DEVICE constexpr
explicit operator float() const {
return float(get());
}
};
/// Reference object extracts sub-byte items
class const_reference {
/// Pointer to storage element
Storage const* ptr_;
/// Index into elements packed into Storage object
int idx_;
public:
/// Default ctor
CUTE_HOST_DEVICE constexpr
const_reference(): ptr_(nullptr), idx_(0) { }
/// Ctor
CUTE_HOST_DEVICE constexpr
const_reference(Storage const* ptr, int idx = 0): ptr_(ptr), idx_(idx) { }
CUTE_HOST_DEVICE constexpr
const T get() const {
Storage item = Storage((*ptr_ >> (idx_ * sizeof_bits<T>::value)) & bit_mask_);
return reinterpret_cast<T const&>(item);
}
/// Extract to type T -- disable if T == bool
template <class U = T, __CUTE_REQUIRES(not std::is_same<U,bool>::value)>
CUTE_HOST_DEVICE constexpr
operator T() const {
return get();
}
// Extract to bool -- potentially faster impl
CUTE_HOST_DEVICE constexpr
operator bool() const {
return bool((*ptr_) & (bit_mask_ << (idx_ * sizeof_bits<T>::value)));
}
/// Explicit cast to int
CUTE_HOST_DEVICE constexpr
explicit operator int() const {
return int(get());
}
/// Explicit cast to float
CUTE_HOST_DEVICE constexpr
explicit operator float() const {
return float(get());
}
};
//
// Iterators
//
/// Bidirectional iterator over elements
class iterator {
/// Pointer to storage element
Storage* ptr_;
/// Index into elements packed into Storage object
int idx_;
public:
CUTE_HOST_DEVICE constexpr
iterator(): ptr_(nullptr), idx_(0) { }
CUTE_HOST_DEVICE constexpr
iterator(Storage* ptr, int idx = 0): ptr_(ptr), idx_(idx) { }
CUTE_HOST_DEVICE constexpr
iterator& operator++() {
++idx_;
if (idx_ == kElementsPerStoredItem) {
++ptr_;
idx_ = 0;
}
return *this;
}
CUTE_HOST_DEVICE constexpr
iterator& operator--() {
if (idx_) {
--idx_;
} else {
--ptr_;
idx_ = kElementsPerStoredItem - 1;
}
return *this;
}
CUTE_HOST_DEVICE constexpr
iterator operator++(int) {
iterator ret(*this);
++(*this);
return ret;
}
CUTE_HOST_DEVICE constexpr
iterator operator--(int) {
iterator ret(*this);
--(*this);
return ret;
}
CUTE_HOST_DEVICE constexpr
iterator& operator+=(int k) {
idx_ += k;
ptr_ += idx_ / kElementsPerStoredItem;
idx_ = idx_ % kElementsPerStoredItem;
return *this;
}
CUTE_HOST_DEVICE constexpr
iterator operator+(int k) const {
return iterator(ptr_,idx_) += k;
}
CUTE_HOST_DEVICE constexpr
reference operator*() const {
return reference(ptr_, idx_);
}
CUTE_HOST_DEVICE constexpr
reference operator[](int k) const {
return *(*this + k);
}
CUTE_HOST_DEVICE constexpr
bool operator==(iterator const& other) const {
return ptr_ == other.ptr_ && idx_ == other.idx_;
}
CUTE_HOST_DEVICE constexpr
bool operator!=(iterator const& other) const {
return !(*this == other);
}
};
/// Bidirectional constant iterator over elements
class const_iterator {
/// Pointer to storage element
Storage const* ptr_;
/// Index into elements packed into Storage object
int idx_;
public:
CUTE_HOST_DEVICE constexpr
const_iterator(): ptr_(nullptr), idx_(0) { }
CUTE_HOST_DEVICE constexpr
const_iterator(Storage const* ptr, int idx = 0): ptr_(ptr), idx_(idx) { }
CUTE_HOST_DEVICE constexpr
const_iterator& operator++() {
++idx_;
if (idx_ == kElementsPerStoredItem) {
++ptr_;
idx_ = 0;
}
return *this;
}
CUTE_HOST_DEVICE constexpr
const_iterator& operator--() {
if (idx_) {
--idx_;
} else {
--ptr_;
idx_ = kElementsPerStoredItem - 1;
}
return *this;
}
CUTE_HOST_DEVICE constexpr
const_iterator operator++(int) {
iterator ret(*this);
++idx_;
if (idx_ == kElementsPerStoredItem) {
++ptr_;
idx_ = 0;
}
return ret;
}
CUTE_HOST_DEVICE constexpr
const_iterator operator--(int) {
iterator ret(*this);
if (idx_) {
--idx_;
} else {
--ptr_;
idx_ = kElementsPerStoredItem - 1;
}
return ret;
}
CUTE_HOST_DEVICE constexpr
const_iterator& operator+=(int k) {
idx_ += k;
ptr_ += idx_ / kElementsPerStoredItem;
idx_ = idx_ % kElementsPerStoredItem;
return *this;
}
CUTE_HOST_DEVICE constexpr
const_iterator operator+(int k) const {
return const_iterator(ptr_,idx_) += k;
}
CUTE_HOST_DEVICE constexpr
const_reference operator*() const {
return const_reference(ptr_, idx_);
}
CUTE_HOST_DEVICE constexpr
const_reference operator[](int k) const {
return *(*this + k);
}
CUTE_HOST_DEVICE constexpr
bool operator==(iterator const& other) const {
return ptr_ == other.ptr_ && idx_ == other.idx_;
}
CUTE_HOST_DEVICE constexpr
bool operator!=(iterator const& other) const {
return !(*this == other);
}
};
private:
/// Internal storage
Storage storage[kStorageElements];
public:
CUTE_HOST_DEVICE constexpr
array_subbyte() { }
CUTE_HOST_DEVICE constexpr
array_subbyte(array_subbyte const& x) {
CUTE_UNROLL
for (unsigned i = 0; i < kStorageElements; ++i) {
storage[i] = x.storage[i];
}
}
CUTE_HOST_DEVICE constexpr
size_type size() const {
return N;
}
CUTE_HOST_DEVICE constexpr
size_type max_size() const {
return N;
}
CUTE_HOST_DEVICE constexpr
bool empty() const {
return !N;
}
/// Efficient clear method
CUTE_HOST_DEVICE constexpr
void clear() {
CUTE_UNROLL
for (unsigned i = 0; i < kStorageElements; ++i) {
storage[i] = Storage(0);
}
}
// Efficient fill method
CUTE_HOST_DEVICE constexpr
void fill(T const& value) {
Storage item = (reinterpret_cast<Storage const&>(value) & bit_mask_);
// Reproduce the value over the bits of the storage item
CUTE_UNROLL
for (unsigned s = sizeof_bits<T>::value; s < sizeof_bits<Storage>::value; s *= 2) {
item |= item << s;
}
CUTE_UNROLL
for (unsigned i = 0; i < kStorageElements; ++i) {
storage[i] = item;
}
}
CUTE_HOST_DEVICE constexpr
reference at(size_type pos) {
return reference(storage + pos / kElementsPerStoredItem, pos % kElementsPerStoredItem);
}
CUTE_HOST_DEVICE constexpr
const_reference at(size_type pos) const {
return const_reference(storage + pos / kElementsPerStoredItem, pos % kElementsPerStoredItem);
}
CUTE_HOST_DEVICE constexpr
reference operator[](size_type pos) {
return at(pos);
}
CUTE_HOST_DEVICE constexpr
const_reference operator[](size_type pos) const {
return at(pos);
}
CUTE_HOST_DEVICE constexpr
reference front() {
return at(0);
}
CUTE_HOST_DEVICE constexpr
const_reference front() const {
return at(0);
}
CUTE_HOST_DEVICE constexpr
reference back() {
return reference(storage + kStorageElements - 1, kElementsPerStoredItem - 1);
}
CUTE_HOST_DEVICE constexpr
const_reference back() const {
return const_reference(storage + kStorageElements - 1, kElementsPerStoredItem - 1);
}
CUTE_HOST_DEVICE constexpr
pointer data() {
return reinterpret_cast<pointer>(storage);
}
CUTE_HOST_DEVICE constexpr
const_pointer data() const {
return reinterpret_cast<const_pointer>(storage);
}
CUTE_HOST_DEVICE constexpr
Storage* raw_data() {
return storage;
}
CUTE_HOST_DEVICE constexpr
Storage const* raw_data() const {
return storage;
}
CUTE_HOST_DEVICE constexpr
iterator begin() {
return iterator(storage);
}
CUTE_HOST_DEVICE constexpr
const_iterator begin() const {
return const_iterator(storage);
}
CUTE_HOST_DEVICE constexpr
const_iterator cbegin() const {
return begin();
}
CUTE_HOST_DEVICE constexpr
iterator end() {
return iterator(storage + N / kElementsPerStoredItem, N % kElementsPerStoredItem);
}
CUTE_HOST_DEVICE constexpr
const_iterator end() const {
return const_iterator(storage + N / kElementsPerStoredItem, N % kElementsPerStoredItem);
}
CUTE_HOST_DEVICE constexpr
const_iterator cend() const {
return end();
}
//
// Comparison operators
//
};
//
// Operators
//
template <class T, std::size_t N>
CUTE_HOST_DEVICE constexpr
void clear(array_subbyte<T,N>& a)
{
a.clear();
}
template <class T, std::size_t N>
CUTE_HOST_DEVICE constexpr
void fill(array_subbyte<T,N>& a, T const& value)
{
a.fill(value);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cute
//
// Specialize tuple-related functionality for cute::array_subbyte
//
#include <tuple>
namespace cute
{
template <std::size_t I, class T, std::size_t N>
CUTE_HOST_DEVICE constexpr
T& get(array_subbyte<T,N>& a)
{
static_assert(I < N, "Index out of range");
return a[I];
}
template <std::size_t I, class T, std::size_t N>
CUTE_HOST_DEVICE constexpr
T const& get(array_subbyte<T,N> const& a)
{
static_assert(I < N, "Index out of range");
return a[I];
}
template <std::size_t I, class T, std::size_t N>
CUTE_HOST_DEVICE constexpr
T&& get(array_subbyte<T,N>&& a)
{
static_assert(I < N, "Index out of range");
return std::move(a[I]);
}
} // end namespace cute
namespace std
{
template <class T, std::size_t N>
struct tuple_size<cute::array_subbyte<T,N>>
: std::integral_constant<std::size_t, N>
{};
template <std::size_t I, class T, std::size_t N>
struct tuple_element<I, cute::array_subbyte<T,N>>
{
using type = T;
};
} // end namespace std