cutlass/test/unit/conv/device/CMakeLists.txt
ANIKET SHIVAM 66d9cddc83
New updates for 2.11 (#775)
* New updates.

* Minor profiler updates

Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-01-20 16:32:57 -05:00

246 lines
8.7 KiB
CMake

# Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
list(SORT CUTLASS_NVCC_ARCHS_ENABLED)
set(CUTLASS_NVCC_ARCHS_ENABLED_REVERSED ${CUTLASS_NVCC_ARCHS_ENABLED})
list(REVERSE CUTLASS_NVCC_ARCHS_ENABLED_REVERSED)
list(GET CUTLASS_NVCC_ARCHS_ENABLED_REVERSED 0 CUTLASS_NVCC_MAX_ARCH)
add_custom_target(
cutlass_test_unit_conv_device
DEPENDS
cutlass_test_unit_conv_device_simt
)
add_custom_target(
test_unit_conv_device
DEPENDS
test_unit_conv_device_simt
)
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 70)
add_dependencies(
cutlass_test_unit_conv_device
cutlass_test_unit_conv_device_tensorop_f32_sm70
)
add_dependencies(
test_unit_conv_device
test_unit_conv_device_tensorop_f32_sm70
)
endif()
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 75)
add_dependencies(
cutlass_test_unit_conv_device
cutlass_test_unit_conv_device_tensorop_f32_sm75
cutlass_test_unit_conv_device_tensorop_s32
cutlass_test_unit_conv_device_tensorop_s32_interleaved
)
add_dependencies(
test_unit_conv_device
test_unit_conv_device_tensorop_f32_sm75
test_unit_conv_device_tensorop_s32
test_unit_conv_device_tensorop_s32_interleaved
)
endif()
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 80)
add_dependencies(
cutlass_test_unit_conv_device
cutlass_test_unit_conv_device_tensorop_f16_sm80
cutlass_test_unit_conv_device_tensorop_f32_sm80
cutlass_test_unit_conv_device_tensorop_f32_tf32_sm80
)
add_dependencies(
test_unit_conv_device
test_unit_conv_device_tensorop_f16_sm80
test_unit_conv_device_tensorop_f32_sm80
test_unit_conv_device_tensorop_f32_tf32_sm80
)
endif()
#
# OpClassSimt (CUDA cores)
#
cutlass_test_unit_add_executable(
cutlass_test_unit_conv_device_simt
# F32
conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm50.cu
# CF32
conv2d_fprop_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm50.cu
conv2d_dgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm50.cu
conv2d_wgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm50.cu
# F16
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu
depthwise_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu
depthwise_conv2d_fprop_direct_conv_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu
depthwise_conv2d_fprop_direct_conv_fixed_stride_dilation_f16nhwc_f16nhwc_f16nhwc_simt_f16_sm60.cu
)
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 80)
cutlass_target_sources(
cutlass_test_unit_conv_device_simt
PRIVATE
conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.cu
conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.cu
conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.cu
conv2d_fprop_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm80.cu
conv2d_dgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm80.cu
conv2d_wgrad_implicit_gemm_cf32nhwc_cf32nhwc_cf32nhwc_simt_f32_sm80.cu
)
endif()
#
# OpClassTensorOp (Tensor cores)
#
# Conv - F16 input, F32 output, F32 accumulation
cutlass_test_unit_add_executable(
cutlass_test_unit_conv_device_tensorop_f32_sm70
conv2d_fprop_with_broadcast_sm70.cu
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm70.cu
conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm70.cu
conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm70.cu
)
# Conv - F16 input, F32 output, F32 accumulation - SM75
cutlass_test_unit_add_executable(
cutlass_test_unit_conv_device_tensorop_f32_sm75
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm75.cu
conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm75.cu
conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm75.cu
conv2d_fprop_with_broadcast_sm75.cu
conv2d_fprop_with_reduction_sm75.cu
conv3d_wgrad_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm75.cu
)
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 80)
# Conv - F16 input, F16 output, F16 accumulation
cutlass_test_unit_add_executable(
cutlass_test_unit_conv_device_tensorop_f16_sm80
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu
conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu
conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu
)
# Conv - F16 input, F32 output, F32 accumulation
cutlass_test_unit_add_executable(
cutlass_test_unit_conv_device_tensorop_f32_sm80
# Conv2d
conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu
conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu
conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu
# Conv2d (small channel count specializations)
conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu
conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu
# Conv2d (Strided Dgrad)
conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.cu
conv2d_strided_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu
# Conv3d
conv3d_wgrad_implicit_gemm_f16ndhwc_f16ndhwc_f32ndhwc_tensor_op_f32_sm80.cu
# Group Conv2d
group_conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.cu
)
# Conv - TF32 input, F32 output, F32 accumulation
cutlass_test_unit_add_executable(
cutlass_test_unit_conv_device_tensorop_f32_tf32_sm80
conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu
conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu
conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.cu
conv3d_fprop_implicit_gemm_tf32ndhwc_tf32ndhwc_f32ndhwc_tensor_op_f32_sm80.cu
conv3d_dgrad_implicit_gemm_tf32ndhwc_tf32ndhwc_f32ndhwc_tensor_op_f32_sm80.cu
conv3d_wgrad_implicit_gemm_tf32ndhwc_tf32ndhwc_f32ndhwc_tensor_op_f32_sm80.cu
)
endif()
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 75)
# Conv2d - S8 input, S32 output, S32 accumulation
cutlass_test_unit_add_executable(
cutlass_test_unit_conv_device_tensorop_s32
conv2d_fprop_implicit_gemm_s8nhwc_s8nhwc_s32nhwc_tensor_op_s32_sm75.cu
conv2d_fprop_implicit_gemm_s4nhwc_s4nhwc_s32nhwc_tensor_op_s32_sm75.cu
)
# Conv2d - S8 interleaved input, S8 interleaved output, S32 accumulation
cutlass_test_unit_add_executable(
cutlass_test_unit_conv_device_tensorop_s32_interleaved
conv2d_fprop_implicit_gemm_s8ncxhwx_s8cxrskx_s8ncxhwx_tensor_op_s32_sm75.cu
conv2d_fprop_implicit_gemm_s4ncxhwx_s4cxrskx_s4ncxhwx_tensor_op_s32_sm75.cu
)
if (CUTLASS_NVCC_MAX_ARCH GREATER_EQUAL 80)
cutlass_target_sources(
cutlass_test_unit_conv_device_tensorop_s32
PRIVATE
conv2d_fprop_implicit_gemm_s8nhwc_s8nhwc_s32nhwc_tensor_op_s32_sm80.cu
conv2d_fprop_implicit_gemm_s4nhwc_s4nhwc_s32nhwc_tensor_op_s32_sm80.cu
)
# Conv2d - S8 interleaved input, S8 interleaved output, S32 accumulation
cutlass_target_sources(
cutlass_test_unit_conv_device_tensorop_s32_interleaved
PRIVATE
conv2d_fprop_implicit_gemm_s8ncxhwx_s8cxrskx_s8ncxhwx_tensor_op_s32_sm80.cu
conv2d_fprop_implicit_gemm_s4ncxhwx_s4cxrskx_s4ncxhwx_tensor_op_s32_sm80.cu
)
endif()
endif()