
* New updates. * Minor profiler updates Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
178 lines
7.2 KiB
Plaintext
178 lines
7.2 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Tests for device-wide Implicit GEMM interface
|
|
*/
|
|
|
|
#include "../../common/cutlass_unit_test.h"
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/array.h"
|
|
#include "cutlass/epilogue/thread/linear_combination_bias_elementwise.h"
|
|
#include "cutlass/epilogue/thread/linear_combination_residual_block.h"
|
|
#include "cutlass/epilogue/thread/activation.h"
|
|
#include "cutlass/conv/kernel/default_conv2d_fprop_with_broadcast.h"
|
|
#include "cutlass/conv/device/implicit_gemm_convolution.h"
|
|
|
|
#include "conv2d_with_broadcast_testbed.h"
|
|
|
|
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED)
|
|
|
|
TEST(SM75_Device_Conv2d_Fprop_With_Broadcast_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32,
|
|
128x128_32x2_64x64x32) {
|
|
|
|
/// Conv operation element types for the Gemm equivalent (ImplicitGemm)
|
|
using ElementA = cutlass::half_t;
|
|
using ElementB = cutlass::half_t;
|
|
using ElementC = cutlass::half_t;
|
|
using ElementAccumulator = float;
|
|
using ElementCompute = float;
|
|
|
|
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationBiasElementwise<
|
|
cutlass::half_t,
|
|
float,
|
|
float,
|
|
cutlass::half_t,
|
|
cutlass::half_t,
|
|
8,
|
|
cutlass::epilogue::thread::ReLu<float>
|
|
>;
|
|
|
|
/// Device-level Conv2d instance
|
|
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFpropWithBroadcast<
|
|
ElementA, cutlass::layout::TensorNHWC,
|
|
ElementB, cutlass::layout::TensorNHWC,
|
|
ElementC, cutlass::layout::TensorNHWC,
|
|
ElementAccumulator,
|
|
cutlass::arch::OpClassTensorOp,
|
|
cutlass::arch::Sm75,
|
|
cutlass::gemm::GemmShape<128, 128, 32>,
|
|
cutlass::gemm::GemmShape<64, 64, 32>,
|
|
cutlass::gemm::GemmShape<16, 8, 8>,
|
|
EpilogueOutputOp,
|
|
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
|
2,
|
|
cutlass::arch::OpMultiplyAdd,
|
|
cutlass::conv::IteratorAlgorithm::kAnalytic
|
|
>::Kernel;
|
|
|
|
using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
|
|
|
/// Run all unit test sizes with device-level Conv2d instance
|
|
EXPECT_TRUE(test::conv::device::TestAllConv2dWithBroadcast<Conv2dFprop>());
|
|
}
|
|
|
|
// Test residual block fusion: UnaryOp(BinaryOp(ActivationOp(Conv2d(X) + bias), residual))
|
|
// LinearCombinationResidualBlock does not support the split-k mode unless ActivationOp is Identity.
|
|
// This is because the activation needs to be applied to the fully accumulated output of the Conv2d op,
|
|
// which only the last thread block would have an access to, before applying BinaryOp.
|
|
// The epilogue functor in the last thread block would have to be given three inputs, namely
|
|
// partial outputs, bias, and residual, but this is not supported in the current interface.
|
|
// Set TestSplitK = false to skip split-k tests with non-trivial ActivationOp.
|
|
template <
|
|
typename ElementAccumulator,
|
|
template<typename T> class ActivationOp,
|
|
template<typename T> class BinaryOp,
|
|
template<typename T> class UnaryOp,
|
|
bool TestSplitK = true
|
|
>
|
|
void TestResidaulBlock() {
|
|
using ElementA = cutlass::half_t;
|
|
using ElementB = cutlass::half_t;
|
|
using ElementC = cutlass::half_t;
|
|
using ElementD = ElementC;
|
|
using ElementCompute = ElementAccumulator;
|
|
|
|
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationResidualBlock<
|
|
ElementD,
|
|
ElementAccumulator,
|
|
ElementCompute,
|
|
ElementC,
|
|
8,
|
|
ActivationOp,
|
|
BinaryOp,
|
|
UnaryOp
|
|
>;
|
|
|
|
using Conv2dFpropKernel = typename cutlass::conv::kernel::DefaultConv2dFpropWithBroadcast<
|
|
ElementA, cutlass::layout::TensorNHWC,
|
|
ElementB, cutlass::layout::TensorNHWC,
|
|
ElementC, cutlass::layout::TensorNHWC,
|
|
ElementAccumulator,
|
|
cutlass::arch::OpClassTensorOp,
|
|
cutlass::arch::Sm75,
|
|
cutlass::gemm::GemmShape<128, 128, 32>,
|
|
cutlass::gemm::GemmShape<64, 64, 32>,
|
|
cutlass::gemm::GemmShape<16, 8, 8>,
|
|
EpilogueOutputOp,
|
|
cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>,
|
|
2,
|
|
cutlass::arch::OpMultiplyAdd,
|
|
cutlass::conv::IteratorAlgorithm::kAnalytic
|
|
>::Kernel;
|
|
|
|
using Conv2dFprop = cutlass::conv::device::ImplicitGemmConvolution<Conv2dFpropKernel>;
|
|
|
|
struct ReferenceOp {
|
|
using OutputOp = typename Conv2dFprop::EpilogueOutputOp;
|
|
using ElementZ = typename OutputOp::ElementZ;
|
|
|
|
ActivationOp<ElementCompute> activation;
|
|
BinaryOp<ElementCompute> binary_op;
|
|
UnaryOp<ElementCompute> unary_op;
|
|
|
|
void operator()(ElementZ &Z, ElementZ&, ElementCompute conv2d, ElementCompute residual) {
|
|
Z = ElementZ(unary_op(binary_op(activation(conv2d), residual)));
|
|
}
|
|
};
|
|
|
|
bool passed = test::conv::device::TestAllConv2dWithBroadcast<Conv2dFprop, ReferenceOp, true, TestSplitK>();
|
|
EXPECT_TRUE(passed);
|
|
}
|
|
|
|
TEST(SM75_Device_Conv2d_Fprop_With_Residual_Block_Plus_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32,
|
|
128x128_32x2_64x64x32) {
|
|
// Resnet
|
|
TestResidaulBlock<cutlass::half_t, cutlass::epilogue::thread::Identity, cutlass::plus, cutlass::epilogue::thread::ReLu>();
|
|
}
|
|
|
|
TEST(SM75_Device_Conv2d_Fprop_With_Residual_Block_Multiply_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32,
|
|
128x128_32x2_64x64x32) {
|
|
// EfficientNet V2
|
|
// Do not run split-K tests since the activation op is not Identity.
|
|
TestResidaulBlock<float, cutlass::epilogue::thread::Sigmoid, cutlass::multiplies, cutlass::epilogue::thread::Identity, false>();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
#endif // CUTLASS_ARCH_MMA_SM75_SUPPORTED
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|