cutlass/test/unit/cute/hopper/tma_store.cu
Vijay Thakkar 277bd6e537
CUTLASS 3.0.0 (#786)
* CUTLASS 3.0.0
2023-01-23 20:55:28 -05:00

385 lines
14 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
#include "cutlass_unit_test.h"
#include <iostream>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <cute/tensor.hpp>
using namespace cute;
template <class ElementType, class SmemLayout>
struct SharedStorage
{
cute::array_aligned<ElementType, cute::cosize_v<SmemLayout>> smem;
};
// __grid_constant__ was introduced in CUDA 11.7.
#if ((__CUDACC_VER_MAJOR__ >= 12) || ((__CUDACC_VER_MAJOR__ == 11) && (__CUDACC_VER_MINOR__ >= 7)))
# define CUTE_GRID_CONSTANT_SUPPORTED
#endif
// __grid_constant__ can be enabled only on SM70+
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 700))
# define CUTE_GRID_CONSTANT_ENABLED
#endif
#if ! defined(CUTE_GRID_CONSTANT)
# if defined(CUTE_GRID_CONSTANT_SUPPORTED) && defined(CUTE_GRID_CONSTANT_ENABLED)
# define CUTE_GRID_CONSTANT __grid_constant__
# else
# define CUTE_GRID_CONSTANT
# endif
#endif
#if CUDA_12_0_SM90_FEATURES_SUPPORTED
template <class T, class TiledCopy, class GmemLayout, class SmemLayout>
__global__ void
tma_test_device_cute(T const* g_in, T* g_out,
CUTE_GRID_CONSTANT TiledCopy const tma,
GmemLayout gmem_layout, SmemLayout smem_layout)
{
// Use Shared Storage structure to allocate and distribute aligned SMEM addresses
extern __shared__ char shared_memory[];
using SharedStorage = SharedStorage<T, SmemLayout>;
SharedStorage& shared_storage = *reinterpret_cast<SharedStorage*>(shared_memory);
// Construct SMEM tensor
Tensor sA = make_tensor(make_smem_ptr(shared_storage.smem.data()), smem_layout);
//
// Read in trivially
//
Tensor gA_in = make_tensor(make_gmem_ptr(g_in), gmem_layout);
// Input gmem -> smem
for (int i = threadIdx.x; i < size(sA); i += blockDim.x) {
sA(i) = gA_in(i);
}
__syncthreads();
#if 0
//
// Write out trivially
//
Tensor gA_out = make_tensor(make_gmem_ptr(g_out), gmem_layout);
// Output smem -> gmem
for (int i = threadIdx.x; i < size(sA); i += blockDim.x) {
gA_out(i) = sA(i);
}
#else
// TMA requires special handling of strides to deal with coord codomain mapping
// Represent the full tensors -- get these from TMA
Tensor gA = tma.get_tma_tensor(shape(gmem_layout));
//
// Prepare the TMA_STORE
//
auto cta_tma = tma.get_slice(Int<0>{}); // CTA slice
Tensor tAsA = cta_tma.partition_S(sA);
Tensor tAgA = cta_tma.partition_D(gA);
//
// Perform the TMA_STORE
//
if (threadIdx.x == 0) {
copy(tma, tAsA, tAgA);
}
#endif
}
TEST(SM90_CuTe_Hopper, Tma_Store_32x32_Col)
{
using T = half_t;
Layout smem_layout = Layout<Shape<_32,_32>, Stride<_1,_32>>{};
Layout gmem_layout = smem_layout;
thrust::host_vector<T> h_in(size(smem_layout));
for (int i = 0; i < h_in.size(); ++i) { h_in[i] = T(i); }
thrust::device_vector<T> d_in = h_in;
thrust::device_vector<T> d_out(h_in.size(), T(-1));
Tensor gA = make_tensor(d_out.data().get(), gmem_layout);
auto tma = make_tma_copy(SM90_TMA_STORE{}, gA, smem_layout);
//print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n");
int smem_size = int(sizeof(SharedStorage<T, decltype(smem_layout)>));
tma_test_device_cute<<<1, 128, smem_size>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tma,
gmem_layout,
smem_layout);
thrust::host_vector<T> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe TMA_STORE 32x32 ColMajor SUCCESS\n");
}
TEST(SM90_CuTe_Hopper, Tma_Store_32x32_Row)
{
using T = half_t;
Layout smem_layout = Layout<Shape<_32,_32>, Stride<_32,_1>>{};
Layout gmem_layout = smem_layout;
thrust::host_vector<T> h_in(size(smem_layout));
for (int i = 0; i < h_in.size(); ++i) { h_in[i] = T(i); }
thrust::device_vector<T> d_in = h_in;
thrust::device_vector<T> d_out(h_in.size(), T(-1));
Tensor gA = make_tensor(d_out.data().get(), gmem_layout);
auto tma = make_tma_copy(SM90_TMA_STORE{}, gA, smem_layout);
//print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n");
int smem_size = int(sizeof(SharedStorage<T, decltype(smem_layout)>));
tma_test_device_cute<<<1, 128, smem_size>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tma,
gmem_layout,
smem_layout);
thrust::host_vector<T> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe TMA_STORE 32x32 RowMajor SUCCESS\n");
}
TEST(SM90_CuTe_Hopper, Tma_Store_GMMA_SW128_MN)
{
using T = half_t;
auto smem_layout = GMMA::Layout_MN_SW128_Atom<T>{};
Layout gmem_layout = make_layout(make_shape(size<0>(smem_layout), size<1>(smem_layout)), GenColMajor{});
thrust::host_vector<T> h_in(size(smem_layout));
for (int i = 0; i < h_in.size(); ++i) { h_in[i] = T(i); }
thrust::device_vector<T> d_in = h_in;
thrust::device_vector<T> d_out(h_in.size(), T(-1));
Tensor gA = make_tensor(d_out.data().get(), gmem_layout);
auto tma = make_tma_copy(SM90_TMA_STORE{}, gA, smem_layout);
//print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n");
int smem_size = int(sizeof(SharedStorage<T, decltype(smem_layout)>));
tma_test_device_cute<<<1, 128, smem_size>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tma,
gmem_layout,
smem_layout);
thrust::host_vector<T> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe TMA_STORE GMMA::Layout_MN_SW128_Atom<T> SUCCESS\n");
}
TEST(SM90_CuTe_Hopper, Tma_Store_GMMA_SW128_K)
{
using T = half_t;
auto smem_layout = GMMA::Layout_K_SW128_Atom<T>{};
Layout gmem_layout = make_layout(make_shape(size<0>(smem_layout), size<1>(smem_layout)), GenRowMajor{});
thrust::host_vector<T> h_in(size(smem_layout));
for (int i = 0; i < h_in.size(); ++i) { h_in[i] = T(i); }
thrust::device_vector<T> d_in = h_in;
thrust::device_vector<T> d_out(h_in.size(), T(-1));
Tensor gA = make_tensor(d_out.data().get(), gmem_layout);
auto tma = make_tma_copy(SM90_TMA_STORE{}, gA, smem_layout);
//print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n");
int smem_size = int(sizeof(SharedStorage<T, decltype(smem_layout)>));
tma_test_device_cute<<<1, 128, smem_size>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tma,
gmem_layout,
smem_layout);
thrust::host_vector<T> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe TMA_STORE GMMA::Layout_K_SW128_Atom<T> SUCCESS\n");
}
TEST(SM90_CuTe_Hopper, Tma_Store_GMMA_SW128_MN_Multi)
{
using T = half_t;
auto smem_layout = tile_to_shape(GMMA::Layout_MN_SW128_Atom<T>{}, Shape<Int<128>,Int<128>>{});
Layout gmem_layout = make_layout(make_shape(size<0>(smem_layout), size<1>(smem_layout)), GenColMajor{});
thrust::host_vector<T> h_in(size(smem_layout));
for (int i = 0; i < h_in.size(); ++i) { h_in[i] = T(i); }
thrust::device_vector<T> d_in = h_in;
thrust::device_vector<T> d_out(h_in.size(), T(-1));
Tensor gA = make_tensor(d_out.data().get(), gmem_layout);
auto tma = make_tma_copy(SM90_TMA_STORE{}, gA, smem_layout);
//print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n");
int smem_size = int(sizeof(SharedStorage<T, decltype(smem_layout)>));
tma_test_device_cute<<<1, 128, smem_size>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tma,
gmem_layout,
smem_layout);
thrust::host_vector<T> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe TMA_STORE GMMA::Layout_MN_SW128_Atom<T> Multi SUCCESS\n");
}
TEST(SM90_CuTe_Hopper, Tma_Store_GMMA_SW128_MN_Multi2)
{
using T = half_t;
// Tile the GMMA::Layout atom in the K-mode first, then the M-mode to get a bigger box size
auto smem_layout = tile_to_shape(GMMA::Layout_MN_SW128_Atom<T>{}, Shape<Int<128>,Int<128>>{}, Step<_2,_1>{});
Layout gmem_layout = make_layout(make_shape(size<0>(smem_layout), size<1>(smem_layout)), GenColMajor{});
thrust::host_vector<T> h_in(size(smem_layout));
for (int i = 0; i < h_in.size(); ++i) { h_in[i] = T(i); }
thrust::device_vector<T> d_in = h_in;
thrust::device_vector<T> d_out(h_in.size(), T(-1));
Tensor gA = make_tensor(d_out.data().get(), gmem_layout);
auto tma = make_tma_copy(SM90_TMA_STORE{}, gA, smem_layout);
//print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n");
int smem_size = int(sizeof(SharedStorage<T, decltype(smem_layout)>));
tma_test_device_cute<<<1, 128, smem_size>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tma,
gmem_layout,
smem_layout);
thrust::host_vector<T> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe TMA_STORE GMMA::Layout_MN_SW128_Atom<T> Multi SUCCESS\n");
}
TEST(SM90_CuTe_Hopper, Tma_Store_GMMA_SW128_MN_Multi_Dyn)
{
using T = half_t;
auto smem_layout = tile_to_shape(GMMA::Layout_MN_SW128_Atom<T>{}, Shape<Int<128>,Int<128>>{}, Step<_2,_1>{});
Layout gmem_layout = make_layout(make_shape(128, 128), GenColMajor{});
thrust::host_vector<T> h_in(size(smem_layout));
for (int i = 0; i < h_in.size(); ++i) { h_in[i] = T(i); }
thrust::device_vector<T> d_in = h_in;
thrust::device_vector<T> d_out(h_in.size(), T(-1));
Tensor gA = make_tensor(d_out.data().get(), gmem_layout);
auto tma = make_tma_copy(SM90_TMA_STORE{}, gA, smem_layout);
//print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n");
int smem_size = int(sizeof(SharedStorage<T, decltype(smem_layout)>));
tma_test_device_cute<<<1, 128, smem_size>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tma,
gmem_layout,
smem_layout);
thrust::host_vector<T> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe TMA_STORE GMMA::Layout_MN_SW128_Atom<T> Multi SUCCESS\n");
}
TEST(SM90_CuTe_Hopper, Tma_Store_32x32_Multimode)
{
using T = half_t;
auto smem_layout = Layout<Shape<_32,_32>, Stride<_32,_1>>{};
Layout gmem_layout = make_layout(make_shape(make_shape(8,4), 32), GenRowMajor{});
//auto smem_layout = Layout<Shape<_32,_32>>{};
//Layout gmem_layout = make_layout(make_shape(make_shape(8,4), 32), GenColMajor{});
thrust::host_vector<T> h_in(size(smem_layout));
for (int i = 0; i < h_in.size(); ++i) { h_in[i] = T(i); }
thrust::device_vector<T> d_in = h_in;
thrust::device_vector<T> d_out(h_in.size(), T(-1));
Tensor gA = make_tensor(d_out.data().get(), gmem_layout);
auto tma = make_tma_copy(SM90_TMA_STORE{}, gA, smem_layout);
//print("TMA Box size: "); print(typename decltype(tma)::Tiler_MN{}); print("\n");
int smem_size = int(sizeof(SharedStorage<T, decltype(smem_layout)>));
tma_test_device_cute<<<1, 128, smem_size>>>(
thrust::raw_pointer_cast(d_in.data()),
thrust::raw_pointer_cast(d_out.data()),
tma,
gmem_layout,
smem_layout);
thrust::host_vector<T> h_out = d_out;
for (int i = 0; i < size(smem_layout); ++i) {
//printf("%d %d\n", int(h_in[i]), int(h_out[i]));
EXPECT_EQ(h_out[i], h_in[i]);
}
CUTLASS_TRACE_HOST("CuTe TMA_STORE GMMA::Layout_MN_SW128_Atom<T> Multi SUCCESS\n");
}
#endif