cutlass/include/cutlass/conv/kernel/default_conv2d_dgrad.h
2024-01-16 14:37:22 -05:00

1928 lines
52 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief
Default kernel-level implicit GEMM convolution definitions combine threadblock-scoped
matrix multiply-add with the appropriate threadblock-scoped epilogue.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/conv/kernel/default_conv2d.h"
#include "cutlass/conv/threadblock/conv2d_dgrad_output_gradient_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_dgrad_output_gradient_tile_access_iterator_optimized.h"
#include "cutlass/conv/threadblock/conv2d_dgrad_filter_tile_access_iterator_analytic.h"
#include "cutlass/conv/threadblock/conv2d_dgrad_filter_tile_access_iterator_optimized.h"
#include "cutlass/conv/threadblock/conv2d_tile_iterator.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace conv {
namespace kernel {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dDgrad
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename OperatorClass,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
conv::IteratorAlgorithm IteratorAlgorithm = IteratorAlgorithm::kOptimized,
conv::StrideSupport StrideSupport = StrideSupport::kStrided,
/// Access granularity of A matrix in units of elements
int AlignmentA = 128 / cutlass::sizeof_bits<ElementA>::value,
/// Access granularity of B matrix in units of elements
int AlignmentB = 128 / cutlass::sizeof_bits<ElementB>::value
> struct DefaultConv2dDgrad;
/////////////////////////////////////////////////////////////////////////////////////////////////
// OpClassTensorOp convolutions
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dDgrad specialization for Analytic IteratorAlgorithm Dgrad Strided and
// multistage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
StrideSupport::kStrided,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using AccessTypeA = cutlass::AlignedArray<ElementA, AlignmentA>;
using IteratorA =
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kStrided,
AccessTypeA
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using AccessTypeB = cutlass::AlignedArray<ElementB, AlignmentB>;
using IteratorB =
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kStrided,
AccessTypeB
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp = typename MmaCore::MmaTensorOp;
using MmaPolicy = typename MmaCore::MmaPolicy;
static cutlass::arch::CacheOperation::Kind const CacheOpB =
((sizeof_bits<ElementB>::value * AlignmentB) == 128)
? cutlass::arch::CacheOperation::Global
: cutlass::arch::CacheOperation::Always;
// Define the Mma
using Mma = threadblock::ImplicitGemmMultistage<
ThreadblockShape,
IteratorA,
SmemIteratorA,
arch::CacheOperation::Always,
IteratorB,
SmemIteratorB,
CacheOpB,
MmaPolicy,
Stages
>;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueTensorOpStridedDgrad<
ThreadblockShape,
WarpMmaTensorOp,
kPartitionsK,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolutionStridedDgrad<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/// Defines a kernel for Conv2dDgrad specialization for Analytic IteratorAlgorithm Dgrad Strided
// and 2 stage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
StrideSupport::kStrided,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using AccessTypeA = cutlass::AlignedArray<ElementA, AlignmentA>;
using IteratorA =
cutlass::conv::threadblock::TileIteratorStridedDgrad<
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kStrided,
AccessTypeA
>
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using AccessTypeB = cutlass::AlignedArray<ElementB, AlignmentB>;
using IteratorB =
cutlass::conv::threadblock::TileIteratorStridedDgrad<
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kStrided,
AccessTypeB
>
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp = typename MmaCore::MmaTensorOp;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmPipelined<
ThreadblockShape,
IteratorA,
SmemIteratorA,
IteratorB,
SmemIteratorB,
ElementC,
LayoutC,
MmaPolicy
>;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
// Define the epilogue
using Epilogue = typename detail::DefaultConvEpilogueStridedDgrad<
ArchTag,
ThreadblockShape,
WarpMmaTensorOp,
kPartitionsK,
EpilogueOutputOp
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolutionStridedDgrad<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dDgrad specialization for Analytic IteratorAlgorithm Dgrad Unity Strided
// and multistage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
StrideSupport::kUnity,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using AccessTypeA = cutlass::AlignedArray<ElementA, AlignmentA>;
using IteratorA =
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kUnity,
AccessTypeA
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using AccessTypeB = cutlass::AlignedArray<ElementB, AlignmentB>;
using IteratorB =
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kUnity,
AccessTypeB
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp = typename MmaCore::MmaTensorOp;
using MmaPolicy = typename MmaCore::MmaPolicy;
static cutlass::arch::CacheOperation::Kind const CacheOpB =
((sizeof_bits<ElementB>::value * AlignmentB) == 128)
? cutlass::arch::CacheOperation::Global
: cutlass::arch::CacheOperation::Always;
// Define the Mma
using Mma = threadblock::ImplicitGemmMultistage<
ThreadblockShape,
IteratorA,
SmemIteratorA,
arch::CacheOperation::Always,
IteratorB,
SmemIteratorB,
CacheOpB,
MmaPolicy,
Stages
>;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape,
WarpMmaTensorOp,
kPartitionsK,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolution<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/// Defines a kernel for Conv2dDgrad specialization for Analytic IteratorAlgorithm Dgrad Unity
// 2 stage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
StrideSupport::kUnity,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using AccessTypeA = cutlass::AlignedArray<ElementA, AlignmentA>;
using IteratorA =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kUnity,
AccessTypeA
>
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using AccessTypeB = cutlass::AlignedArray<ElementB, AlignmentB>;
using IteratorB =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kUnity,
AccessTypeB
>
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp = typename MmaCore::MmaTensorOp;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmPipelined<
ThreadblockShape,
IteratorA,
SmemIteratorA,
IteratorB,
SmemIteratorB,
ElementC,
LayoutC,
MmaPolicy
>;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
// Define the epilogue
using Epilogue = typename detail::DefaultConvEpilogue<
ArchTag,
ThreadblockShape,
WarpMmaTensorOp,
kPartitionsK,
EpilogueOutputOp
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolution<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dDgrad specialization for optimized IteratorAlgorithm Dgrad Unity Strided
// and multistage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
StrideSupport::kUnity,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using AccessTypeA = cutlass::AlignedArray<ElementA, AlignmentA>;
using IteratorA =
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kUnity,
AccessTypeA
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using AccessTypeB = cutlass::AlignedArray<ElementB, AlignmentB>;
using IteratorB =
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kUnity,
AccessTypeB
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp = typename MmaCore::MmaTensorOp;
using MmaPolicy = typename MmaCore::MmaPolicy;
static cutlass::arch::CacheOperation::Kind const CacheOpB =
((sizeof_bits<ElementB>::value * AlignmentB) == 128)
? cutlass::arch::CacheOperation::Global
: cutlass::arch::CacheOperation::Always;
// Define the Mma
using Mma = threadblock::ImplicitGemmMultistage<
ThreadblockShape,
IteratorA,
SmemIteratorA,
arch::CacheOperation::Always,
IteratorB,
SmemIteratorB,
CacheOpB,
MmaPolicy,
Stages
>;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueTensorOp<
ThreadblockShape,
WarpMmaTensorOp,
kPartitionsK,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolution<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/// Defines a kernel for Conv2dDgrad specialization for Optimized IteratorAlgorithm Dgrad Strided and
// multistage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
StrideSupport::kStrided,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using AccessTypeA = cutlass::AlignedArray<ElementA, AlignmentA>;
using IteratorA =
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kStrided,
AccessTypeA
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using AccessTypeB = cutlass::AlignedArray<ElementB, AlignmentB>;
using IteratorB =
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kStrided,
AccessTypeB
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp = typename MmaCore::MmaTensorOp;
using MmaPolicy = typename MmaCore::MmaPolicy;
static cutlass::arch::CacheOperation::Kind const CacheOpB =
((sizeof_bits<ElementB>::value * AlignmentB) == 128)
? cutlass::arch::CacheOperation::Global
: cutlass::arch::CacheOperation::Always;
// Define the Mma
using Mma = threadblock::ImplicitGemmMultistage<
ThreadblockShape,
IteratorA,
SmemIteratorA,
arch::CacheOperation::Always,
IteratorB,
SmemIteratorB,
CacheOpB,
MmaPolicy,
Stages
>;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueTensorOpStridedDgrad<
ThreadblockShape,
WarpMmaTensorOp,
kPartitionsK,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolutionStridedDgrad<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/// Defines a kernel for Conv2dDgrad specialization for Optimized IteratorAlgorithm Dgrad Strided
// and 2 stage pipeline.
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
StrideSupport::kStrided,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using AccessTypeA = cutlass::AlignedArray<ElementA, AlignmentA>;
using IteratorA =
cutlass::conv::threadblock::TileIteratorStridedDgrad<
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kStrided,
AccessTypeA
>
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using AccessTypeB = cutlass::AlignedArray<ElementB, AlignmentB>;
using IteratorB =
cutlass::conv::threadblock::TileIteratorStridedDgrad<
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kStrided,
AccessTypeB
>
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp = typename MmaCore::MmaTensorOp;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmPipelined<
ThreadblockShape,
IteratorA,
SmemIteratorA,
IteratorB,
SmemIteratorB,
ElementC,
LayoutC,
MmaPolicy
>;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
// Define the epilogue
using Epilogue = typename detail::DefaultConvEpilogueStridedDgrad<
ArchTag,
ThreadblockShape,
WarpMmaTensorOp,
kPartitionsK,
EpilogueOutputOp
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolutionStridedDgrad<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/// Defines a kernel for Conv2dDgrad specialization for Optimized IteratorAlgorithm Dgrad Unity
// 2 stage pipeline
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassTensorOp,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
StrideSupport::kUnity,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassTensorOp,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using AccessTypeA = cutlass::AlignedArray<ElementA, AlignmentA>;
using IteratorA =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kUnity,
AccessTypeA
>
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using AccessTypeB = cutlass::AlignedArray<ElementB, AlignmentB>;
using IteratorB =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kUnity,
AccessTypeB
>
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaTensorOp = typename MmaCore::MmaTensorOp;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmPipelined<
ThreadblockShape,
IteratorA,
SmemIteratorA,
IteratorB,
SmemIteratorB,
ElementC,
LayoutC,
MmaPolicy
>;
static const int kPartitionsK = ThreadblockShape::kK / WarpShape::kK;
// Define the epilogue
using Epilogue = typename detail::DefaultConvEpilogue<
ArchTag,
ThreadblockShape,
WarpMmaTensorOp,
kPartitionsK,
EpilogueOutputOp
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolution<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
// OpClassSimt convolutions
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dDgrad specialization for Analytic IteratorAlgorithm,
/// multi-stage pipeline, and FFMA-based mainloop for SM80
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
conv::StrideSupport::kUnity,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassSimt,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using IteratorA =
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
conv::StrideSupport::kUnity
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using IteratorB =
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
conv::StrideSupport::kUnity
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaSimtOp = typename MmaCore::MmaWarpSimt;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmMultistage<
ThreadblockShape,
IteratorA,
SmemIteratorA,
arch::CacheOperation::Always,
IteratorB,
SmemIteratorB,
arch::CacheOperation::Always,
MmaPolicy,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueSimt<
ThreadblockShape,
WarpMmaSimtOp,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolution<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
conv::StrideSupport::kStrided,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassSimt,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using IteratorA =
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
conv::StrideSupport::kStrided
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using IteratorB =
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
conv::StrideSupport::kStrided
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaSimtOp = typename MmaCore::MmaWarpSimt;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmMultistage<
ThreadblockShape,
IteratorA,
SmemIteratorA,
arch::CacheOperation::Always,
IteratorB,
SmemIteratorB,
arch::CacheOperation::Always,
MmaPolicy,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueSimtStridedDgrad<
ThreadblockShape,
WarpMmaSimtOp,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolutionStridedDgrad<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dDgrad specialization for Optimized IteratorAlgorithm,
/// multi-stage pipeline, and FFMA-based mainloop for SM80
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
StrideSupport::kUnity,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassSimt,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using IteratorA =
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kUnity
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using IteratorB =
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kUnity
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaSimtOp = typename MmaCore::MmaWarpSimt;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmMultistage<
ThreadblockShape,
IteratorA,
SmemIteratorA,
arch::CacheOperation::Always,
IteratorB,
SmemIteratorB,
arch::CacheOperation::Always,
MmaPolicy,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueSimt<
ThreadblockShape,
WarpMmaSimtOp,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolution<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
int Stages,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
conv::StrideSupport::kStrided,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassSimt,
Stages, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using IteratorA =
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
conv::StrideSupport::kStrided
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using IteratorB =
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
conv::StrideSupport::kStrided
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaSimtOp = typename MmaCore::MmaWarpSimt;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmMultistage<
ThreadblockShape,
IteratorA,
SmemIteratorA,
arch::CacheOperation::Always,
IteratorB,
SmemIteratorB,
arch::CacheOperation::Always,
MmaPolicy,
Stages
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueSimtStridedDgrad<
ThreadblockShape,
WarpMmaSimtOp,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolutionStridedDgrad<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dDgrad specialization for Analytic IteratorAlgorithm,
/// 2 stage pipeline, and FFMA-based mainloop for SM50
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
conv::StrideSupport::kUnity,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassSimt,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using IteratorA =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
conv::StrideSupport::kUnity
>
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using IteratorB =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
conv::StrideSupport::kUnity
>
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaSimtOp = typename MmaCore::MmaWarpSimt;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmPipelined<
ThreadblockShape,
IteratorA,
SmemIteratorA,
IteratorB,
SmemIteratorB,
ElementC,
LayoutC,
MmaPolicy
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueSimt<
ThreadblockShape,
WarpMmaSimtOp,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolution<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kAnalytic,
conv::StrideSupport::kStrided,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassSimt,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using IteratorA =
cutlass::conv::threadblock::TileIteratorStridedDgrad<
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
conv::StrideSupport::kStrided
>
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using IteratorB =
cutlass::conv::threadblock::TileIteratorStridedDgrad<
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorAnalytic<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
conv::StrideSupport::kStrided
>
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaSimtOp = typename MmaCore::MmaWarpSimt;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmPipelined<
ThreadblockShape,
IteratorA,
SmemIteratorA,
IteratorB,
SmemIteratorB,
ElementC,
LayoutC,
MmaPolicy
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueSimtStridedDgrad<
ThreadblockShape,
WarpMmaSimtOp,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolutionStridedDgrad<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Defines a kernel for Conv2dDgrad specialization for Optimized IteratorAlgorithm,
/// 2 stage pipeline, and FFMA-based mainloop for SM50
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
StrideSupport::kUnity,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassSimt,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using IteratorA =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
StrideSupport::kUnity
>
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using IteratorB =
cutlass::conv::threadblock::TileIterator<
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
StrideSupport::kUnity
>
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaSimtOp = typename MmaCore::MmaWarpSimt;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmPipelined<
ThreadblockShape,
IteratorA,
SmemIteratorA,
IteratorB,
SmemIteratorB,
ElementC,
LayoutC,
MmaPolicy
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueSimt<
ThreadblockShape,
WarpMmaSimtOp,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolution<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
/////////////////////////////////////////////////////////////////////////////////////////////////
template <
typename ElementA,
typename LayoutA,
typename ElementB,
typename LayoutB,
typename ElementC,
typename LayoutC,
typename ElementAccumulator,
typename ArchTag,
typename ThreadblockShape,
typename WarpShape,
typename InstructionShape,
typename EpilogueOutputOp,
typename ThreadblockSwizzle,
typename MathOperatorTag,
int AlignmentA,
int AlignmentB
>
struct DefaultConv2dDgrad <
ElementA,
LayoutA,
ElementB,
LayoutB,
ElementC,
LayoutC,
ElementAccumulator,
arch::OpClassSimt,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
2,
MathOperatorTag,
IteratorAlgorithm::kOptimized,
conv::StrideSupport::kStrided,
AlignmentA,
AlignmentB
> {
// Define the core components from GEMM
using MmaCore = typename cutlass::gemm::threadblock::DefaultMmaCore<
ThreadblockShape, WarpShape, InstructionShape, ElementA, layout::RowMajor,
ElementB, layout::RowMajor, ElementAccumulator, layout::RowMajor, arch::OpClassSimt,
2, MathOperatorTag>;
// Define iterators over tiles from the A operand
using ThreadMapA = typename MmaCore::IteratorThreadMapA;
using IteratorA =
cutlass::conv::threadblock::TileIteratorStridedDgrad<
cutlass::conv::threadblock::Conv2dDgradOutputGradientTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kM, ThreadblockShape::kK>,
ElementA,
ThreadMapA,
conv::StrideSupport::kStrided
>
>;
using SmemIteratorA = typename MmaCore::SmemIteratorA;
// Define iterators over tiles from the B operand
using ThreadMapB = typename MmaCore::IteratorThreadMapB;
using IteratorB =
cutlass::conv::threadblock::TileIteratorStridedDgrad<
cutlass::conv::threadblock::Conv2dDgradFilterTileAccessIteratorOptimized<
cutlass::MatrixShape<ThreadblockShape::kK, ThreadblockShape::kN>,
ElementB,
ThreadMapB,
conv::StrideSupport::kStrided
>
>;
using SmemIteratorB = typename MmaCore::SmemIteratorB;
// Warp-level GEMM components
using WarpMmaSimtOp = typename MmaCore::MmaWarpSimt;
using MmaPolicy = typename MmaCore::MmaPolicy;
// Define the Mma
using Mma = threadblock::ImplicitGemmPipelined<
ThreadblockShape,
IteratorA,
SmemIteratorA,
IteratorB,
SmemIteratorB,
ElementC,
LayoutC,
MmaPolicy
>;
// Define the epilogue
using Epilogue = typename epilogue::threadblock::DefaultEpilogueSimtStridedDgrad<
ThreadblockShape,
WarpMmaSimtOp,
EpilogueOutputOp,
EpilogueOutputOp::kCount
>::Epilogue;
// Define the kernel
using Kernel = cutlass::conv::kernel::ImplicitGemmConvolutionStridedDgrad<
Mma,
Epilogue,
ThreadblockSwizzle,
conv::Operator::kDgrad
>;
};
} // namespace kernel
} // namespace conv
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////