286 lines
12 KiB
Python
286 lines
12 KiB
Python
#################################################################################################
|
|
#
|
|
# Copyright (c) 2023 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
# list of conditions and the following disclaimer.
|
|
#
|
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
# this list of conditions and the following disclaimer in the documentation
|
|
# and/or other materials provided with the distribution.
|
|
#
|
|
# 3. Neither the name of the copyright holder nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
#################################################################################################
|
|
|
|
"""
|
|
Tests the high-level Conv2d interface
|
|
"""
|
|
|
|
from math import ceil
|
|
import unittest
|
|
|
|
import cutlass
|
|
import cutlass_bindings
|
|
import cutlass.utils.datatypes as datatypes
|
|
from cutlass.backend.utils.device import device_cc
|
|
from utils import ExpectException
|
|
import os
|
|
|
|
|
|
class Conv2dEquivalence:
|
|
"""
|
|
Helper class for testing the equivalence of different constructions of the Conv2d interface
|
|
"""
|
|
def __init__(self, conv_kind, element_A, element_B, element_C, element_D, element_accumulator,
|
|
alignment_A, alignment_B, alignment_C):
|
|
|
|
self.element_A = element_A
|
|
self.element_B = element_B
|
|
self.element_C = element_C
|
|
self.element_D = element_D
|
|
self.element_accumulator = element_accumulator
|
|
self.alignment_A = alignment_A
|
|
self.alignment_B = alignment_B
|
|
self.alignment_C = alignment_C
|
|
|
|
self.conv_kind = conv_kind
|
|
|
|
self.plan = cutlass.op.Conv2d(
|
|
kind=self.conv_kind, element_A=element_A, element_B=element_B, element_C=element_C,
|
|
element_D=element_D, element_accumulator=element_accumulator)
|
|
|
|
self.op = self.plan.construct(
|
|
alignment_A=self.alignment_A, alignment_B=self.alignment_B,
|
|
alignment_C=self.alignment_C)
|
|
|
|
def _plans_equal(self, other_plan) -> bool:
|
|
"""
|
|
Compares whether two plans are equal
|
|
|
|
:param other_plan: plan to compare against the default Conv2d
|
|
:type other_plan: cutlass.op.Conv2d
|
|
|
|
:return: whether `other_plan` is equivalent to `self.plan`
|
|
:rtype: bool
|
|
"""
|
|
other_op = other_plan.construct(
|
|
alignment_A=self.alignment_A, alignment_B=self.alignment_B,
|
|
alignment_C=self.alignment_C)
|
|
|
|
return self.op.rt_module.emit() == other_op.rt_module.emit()
|
|
|
|
def generic_test(self):
|
|
"""
|
|
Tests the equivalence of various constructions of the Conv2d interface when using CUTLASS data types
|
|
and layouts for constructing the Conv2d interface
|
|
"""
|
|
if not datatypes.numpy_available:
|
|
return
|
|
|
|
# Test when specifying all parameters
|
|
plan_other = cutlass.op.Conv2d(
|
|
kind=self.conv_kind,
|
|
element_A=self.element_A, element_B=self.element_B, element_C=self.element_C,
|
|
element_D=self.element_D, element_accumulator=self.element_accumulator)
|
|
assert self._plans_equal(plan_other)
|
|
|
|
# Test when specifying all parameters but A
|
|
plan_other = cutlass.op.Conv2d(
|
|
kind=self.conv_kind,
|
|
element_B=self.element_B, element_C=self.element_C,
|
|
element_D=self.element_D, element_accumulator=self.element_accumulator,
|
|
element=self.element_A)
|
|
assert self._plans_equal(plan_other)
|
|
|
|
# Test when specifying all parameters but A and B as tensors using generic element and output
|
|
plan_other = cutlass.op.Conv2d(
|
|
kind=self.conv_kind,
|
|
element_C=self.element_C,
|
|
element_D=self.element_D, element_accumulator=self.element_accumulator,
|
|
element=self.element_A)
|
|
assert self._plans_equal(plan_other)
|
|
|
|
# Test without explicit accumulator. Only run if the type of C and the accumulator are equal
|
|
if self.element_C == self.element_accumulator:
|
|
plan_other = cutlass.op.Conv2d(
|
|
kind=self.conv_kind,
|
|
element_C=self.element_C,
|
|
element_D=self.element_D,
|
|
element=self.element_A)
|
|
assert self._plans_equal(plan_other)
|
|
|
|
# Test with only the generic types. Only rune if the types of A, B, C, and D are the same
|
|
if (self.element_A == self.element_B and self.element_A == self.element_C and self.element_A == self.element_D
|
|
and self.element_A == self.element_accumulator):
|
|
plan_other = cutlass.op.Conv2d(kind=self.conv_kind, element=self.element_A)
|
|
assert self._plans_equal(plan_other)
|
|
|
|
def numpy_test(self):
|
|
"""
|
|
Tests the equivalence of various constructions of the Conv2d interface when using numpy as a frontend
|
|
"""
|
|
if not datatypes.numpy_available:
|
|
return
|
|
|
|
import numpy as np
|
|
type_A = datatypes.numpy_type(self.element_A)
|
|
type_B = datatypes.numpy_type(self.element_B)
|
|
type_C = datatypes.numpy_type(self.element_C)
|
|
type_D = datatypes.numpy_type(self.element_D)
|
|
type_accum = datatypes.numpy_type(self.element_accumulator)
|
|
|
|
size = (2, 2)
|
|
A = np.zeros(size, dtype=type_A)
|
|
B = np.zeros(size, dtype=type_B)
|
|
C = np.zeros(size, dtype=type_C)
|
|
D = np.zeros(size, dtype=type_D)
|
|
|
|
return self.tensor_test(type_A, type_B, type_C, type_D, type_accum, A, B, C, D)
|
|
|
|
def torch_test(self):
|
|
"""
|
|
Tests the equivalence of various constructions of the Conv2d interface when using torch as a frontend
|
|
"""
|
|
if not datatypes.torch_available:
|
|
return
|
|
|
|
import torch
|
|
type_A = datatypes.torch_type(self.element_A)
|
|
type_B = datatypes.torch_type(self.element_B)
|
|
type_C = datatypes.torch_type(self.element_C)
|
|
type_D = datatypes.torch_type(self.element_D)
|
|
type_accum = datatypes.torch_type(self.element_accumulator)
|
|
|
|
size = (2, 2)
|
|
|
|
A = torch.empty(size, dtype=type_A)
|
|
B = torch.empty(size, dtype=type_B)
|
|
C = torch.empty(size, dtype=type_C)
|
|
D = torch.empty(size, dtype=type_D)
|
|
|
|
return self.tensor_test(type_A, type_B, type_C, type_D, type_accum, A, B, C, D)
|
|
|
|
def tensor_test(self, type_A, type_B, type_C, type_D, type_accum, A, B, C, D):
|
|
# Test when specifying all parameters via tensors
|
|
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, A=A, B=B, C=C, D=D, element_accumulator=type_accum)
|
|
assert self._plans_equal(plan_np)
|
|
|
|
# Test when specifying all parameters but A as tensors
|
|
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, B=B, C=C, D=D, element_accumulator=type_accum, element_A=type_A)
|
|
assert self._plans_equal(plan_np)
|
|
|
|
# Test when specifying all parameters but A and B as tensors and using generic element and output
|
|
if type_A == type_B:
|
|
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, C=C, D=D, element_accumulator=type_accum, element=type_A)
|
|
assert self._plans_equal(plan_np)
|
|
|
|
# Test without explicit accumulator. Only run if the type of C and the accumulator.
|
|
if type_C == type_accum:
|
|
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, A=A, B=B, C=C, D=D)
|
|
assert self._plans_equal(plan_np)
|
|
|
|
# Test with only the generic types and layouts. Only run if types and layouts of A, B, C, and D are the same.
|
|
if (type_A == type_B and type_A == type_C and type_A == type_D and type_A == type_accum):
|
|
plan_np = cutlass.op.Conv2d(kind=self.conv_kind, element=type_A)
|
|
assert self._plans_equal(plan_np)
|
|
|
|
def test_all(self):
|
|
"""
|
|
Runs all tests on the Gemm interface
|
|
"""
|
|
self.generic_test()
|
|
self.numpy_test()
|
|
self.torch_test()
|
|
|
|
|
|
@unittest.skipIf(device_cc() <= 80, 'Device compute capability is insufficient for SM80 tests.')
|
|
class ConvEquivalenceTest(unittest.TestCase):
|
|
"""
|
|
Tests the equivalence of different constructions of the Conv2d interface
|
|
"""
|
|
pass
|
|
|
|
type2alignment = {
|
|
cutlass.DataType.f16: 8,
|
|
cutlass.DataType.f32: 4
|
|
}
|
|
|
|
def add_test(conv_kind, element_A, element_B, element_C, element_D, element_accumulator):
|
|
|
|
test_name = f"test_conv2d_{conv_kind}_{element_A}_{element_B}_{element_C}_{element_D}_{element_accumulator}"
|
|
|
|
def run(self):
|
|
conv2d_eq = Conv2dEquivalence(
|
|
conv_kind=conv_kind,
|
|
element_A=element_A, element_B=element_B,
|
|
element_C=element_C, element_D=element_D,
|
|
element_accumulator=element_accumulator,
|
|
alignment_A=type2alignment[element_A], alignment_B=type2alignment[element_B],
|
|
alignment_C=type2alignment[element_C]
|
|
)
|
|
conv2d_eq.test_all()
|
|
|
|
setattr(ConvEquivalenceTest, test_name, run)
|
|
|
|
for conv_kind in ["fprop", "wgrad", "dgrad"]:
|
|
for types in [
|
|
[cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16],
|
|
[cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32],
|
|
[cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f16],
|
|
[cutlass.DataType.f16, cutlass.DataType.f16, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32],
|
|
[cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32, cutlass.DataType.f32]
|
|
]:
|
|
add_test(conv_kind, types[0], types[1], types[2], types[3], types[4])
|
|
|
|
|
|
@unittest.skipIf(device_cc() <= 80, 'Device compute capability is insufficient for SM80 tests.')
|
|
class Conv2dErrorTests(unittest.TestCase):
|
|
"""
|
|
Tests various error scenarios that arise with the high-level Gemm interface
|
|
"""
|
|
|
|
def test_alignment(self):
|
|
"""
|
|
Tests case in which the alignment specified is unsupported
|
|
"""
|
|
plan = cutlass.op.Conv2d(kind="fprop", element=cutlass.DataType.f16)
|
|
|
|
with ExpectException(True, 'Alignment 3 is not supported for F16. The construction should fail.'):
|
|
op = plan.construct(alignment_A=3, alignment_B=3, alignment_C=3)
|
|
|
|
def test_invalid_tile_description(self):
|
|
"""
|
|
Tests scenarios in which an invalid tile description is provided for a given CC
|
|
"""
|
|
plan = cutlass.op.Conv2d(kind="fprop", element=cutlass.DataType.f16)
|
|
|
|
td = plan.tile_descriptions()[0]
|
|
td.threadblock_shape=[17, 32, 5]
|
|
|
|
plan.tile_description = td
|
|
with ExpectException(True, 'The threadblock shape is invalid. The compilation should fail.'):
|
|
plan.compile()
|
|
# Clean up the error message
|
|
os.remove("./cutlass_python_compilation_device_error.txt")
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|