222 lines
7.0 KiB
C++
222 lines
7.0 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/* \file
|
|
\brief Helper functions for mapping CUTLASS concepts to cuBLAS.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#if CUTLASS_ENABLE_CUBLAS
|
|
#include <cublas_v2.h>
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/library/library.h"
|
|
#include "cutlass/library/util.h"
|
|
|
|
#include "options.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace profiler {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Converts a cuBLAS status to cutlass::Status
|
|
Status get_cutlass_status(cublasStatus_t cublas);
|
|
|
|
/// Converts a cuBLASS status to cutlass::profiler::Disposition
|
|
Disposition get_cutlass_disposition(cublasStatus_t cublas_status);
|
|
|
|
/// Maps a CUTLASS tensor layout to a cuBLAS transpose operation
|
|
bool get_cublas_transpose_operation(
|
|
cublasOperation_t &operation,
|
|
library::LayoutTypeID layout,
|
|
library::ComplexTransform transform = library::ComplexTransform::kNone);
|
|
|
|
/// Maps a CUTLASS numeric type to a cuBLAS data type enumeration
|
|
bool get_cublas_datatype(cublasDataType_t &data_type, library::NumericTypeID element_type);
|
|
|
|
/// Gets the cublas algorithm given threadblock tile dimensions and math opcode class
|
|
cublasGemmAlgo_t get_cublas_gemm_algo(
|
|
int cta_m,
|
|
int cta_n,
|
|
int cta_k,
|
|
library::OpcodeClassID opcode_class);
|
|
|
|
/// Returns a status if cuBLAS can satisfy a particular GEMM description
|
|
Status cublas_satisfies(library::GemmDescription const &desc);
|
|
|
|
/// This is a helper class to create cublasHandle_t automatically on CublasCreate object creation and
|
|
/// to destroy cublasHandle_t on CublasCreate object destruction.
|
|
/// Additionaly, it provides implicit cast from CublasCreate's object to cublasHandle_t's object
|
|
class CublasCreate {
|
|
private:
|
|
cublasHandle_t handle;
|
|
cublasStatus_t status;
|
|
|
|
public:
|
|
CublasCreate() {
|
|
status = cublasCreate(&handle);
|
|
}
|
|
|
|
~CublasCreate() {
|
|
cublasDestroy(handle);
|
|
}
|
|
|
|
/// Implicit cast CublasCreate object to cublasHandle_t
|
|
operator cublasHandle_t() const { return handle; }
|
|
|
|
/// returns cublasStatus_t for handle creation
|
|
cublasStatus_t get_cublas_create_status() { return status; }
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace detail {
|
|
|
|
/// Selects one or more cuBLAS algorithms.
|
|
static void select_cublas_algorithms(
|
|
std::vector<cublasGemmAlgo_t> &algorithms,
|
|
Options const &options,
|
|
library::GemmDescription const &op_desc) {
|
|
|
|
library::OpcodeClassID const & opcode_class =
|
|
op_desc.tile_description.math_instruction.opcode_class;
|
|
|
|
switch (options.library.algorithm_mode) {
|
|
case AlgorithmMode::kMatching:
|
|
{
|
|
algorithms.push_back(get_cublas_gemm_algo(
|
|
op_desc.tile_description.threadblock_shape.m(),
|
|
op_desc.tile_description.threadblock_shape.n(),
|
|
op_desc.tile_description.threadblock_shape.k(),
|
|
opcode_class));
|
|
break;
|
|
}
|
|
|
|
case AlgorithmMode::kBest:
|
|
{
|
|
// Choose first enumerated mode. If none are enumerated, choose based on opcode class
|
|
// and evaluate all of them.
|
|
|
|
if (options.library.algorithms.empty()) {
|
|
// Enumerate all algorithms
|
|
if (opcode_class == library::OpcodeClassID::kSimt) {
|
|
|
|
for (int algo = CUBLAS_GEMM_DEFAULT;
|
|
algo <= CUBLAS_GEMM_ALGO23;
|
|
++algo) {
|
|
|
|
algorithms.push_back(cublasGemmAlgo_t(algo));
|
|
}
|
|
}
|
|
else {
|
|
|
|
for (int algo = CUBLAS_GEMM_DEFAULT_TENSOR_OP;
|
|
algo <= CUBLAS_GEMM_ALGO15_TENSOR_OP;
|
|
++algo) {
|
|
|
|
algorithms.push_back(cublasGemmAlgo_t(algo));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
// Use the listed algorithms
|
|
algorithms.reserve(options.library.algorithms.size());
|
|
|
|
for (int algo : options.library.algorithms) {
|
|
algorithms.push_back(reinterpret_cast<cublasGemmAlgo_t const &>(algo));
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case AlgorithmMode::kDefault:
|
|
{
|
|
|
|
// Use the library's default algorithm
|
|
algorithms.push_back((opcode_class == library::OpcodeClassID::kSimt ?
|
|
CUBLAS_GEMM_DEFAULT : CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
|
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Dispatcher to cublasGemmEx()
|
|
struct cublasGemmExDispatcher {
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
library::GemmUniversalConfiguration configuration;
|
|
library::GemmUniversalArguments arguments;
|
|
|
|
// cublass-specific data structures to fill cublas API call arguments
|
|
cublasOperation_t trans_A;
|
|
cublasOperation_t trans_B;
|
|
cudaDataType_t data_type_A;
|
|
cudaDataType_t data_type_B;
|
|
cudaDataType_t data_type_C;
|
|
cudaDataType_t compute_data_type;
|
|
|
|
#if (__CUDA_VER_MAJOR__ >= 11)
|
|
cublasComputeType_t compute_type;
|
|
#endif
|
|
|
|
cublasGemmAlgo_t algo;
|
|
Status status;
|
|
|
|
//
|
|
// Methods
|
|
//
|
|
|
|
cublasGemmExDispatcher(
|
|
library::GemmDescription const &op_desc,
|
|
library::GemmUniversalConfiguration configuration_,
|
|
library::GemmUniversalArguments arguments_,
|
|
cublasGemmAlgo_t algorithm = CUBLAS_GEMM_DFALT
|
|
);
|
|
|
|
/// Executes GEMM using these arguments
|
|
cublasStatus_t operator()(cublasHandle_t handle);
|
|
};
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace detail
|
|
|
|
} // namespace profiler
|
|
} // namespace cutlass
|
|
|
|
|
|
#endif // #if CUTLASS_ENABLE_CUBLAS
|