cutlass/tools/util/host_tensor_view.h
2018-05-16 11:44:56 -07:00

543 lines
16 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Host-side implementation of useful operations
*/
#pragma once
#include <cutlass/cutlass.h>
#include <cutlass/tensor_view.h>
#include <tools/util/type_traits.h>
namespace cutlass {
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename SrcType, typename DstType>
struct Cast {
static inline DstType apply(SrcType src) { return static_cast<DstType>(src); };
};
template <>
struct Cast<float, int8_t> {
static inline int8_t apply(float src) {
return static_cast<int8_t>(fmaxf(-128.f, fminf(127.f, src)));
};
};
template <>
struct Cast<float, uint8_t> {
static inline uint8_t apply(float src) {
return static_cast<uint8_t>(fmaxf(0.f, fminf(255.f, src)));
};
};
////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename T>
class HostTensorView : public TensorView<T> {
public:
/// Base class
typedef TensorView<T> TensorView_t;
/// Convention: depth is the first dimension
static int const Dim_D = 0;
/// Convention: height is the second dimension
static int const Dim_H = 1;
/// Convention: width is the third dimension
static int const Dim_W = 2;
/// Convention: channel is the second dimension
static int const Dim_C = 3;
/// Rank of tensor
static int const Rank = TensorView_t::Rank;
/// Type used to compute the offset of an element to the base of a tensor
typedef typename TensorView_t::Offset_t Offset_t;
/// Reference and stride
typedef typename TensorView_t::TensorRef_t TensorRef_t;
/// Coordinate into tensor
typedef typename TensorView_t::Coord_t Coord_t;
public:
//
// Device and Host Methods
//
/// Default constructor
HostTensorView() {}
/// Constructs a Tensor_view from a TensorRef and size
HostTensorView(TensorRef_t const& _ref, Coord_t const& _size) : TensorView_t(_ref, _size) {}
/// Accesses the size
Coord_t const& size() const { return TensorView_t::size(); }
/// Accesses the size of a specified dimension
int size(int dim) const { return size().at(dim); }
/// Accesses the stride
Coord_t const& stride() const { return TensorView_t::stride(); }
/// Accesses the stride along a specified dimension
int stride(int dim) const { return stride().at(dim); }
/// Returns the number of scalar elements needed to store tensor
size_t capacity() const { return size(3) * stride(3) * stride(2) * stride(1) * stride(0); }
/// Returns true if the Tensor_view is bound to some memory
bool good() const { return TensorView_t::good(); }
/// Updates the reference and size of a TensorView object
void reset(TensorRef_t const& _ref = TensorRef_t(0), Coord_t const& _size = Coord_t()) {
return TensorView_t::reset(_ref, _size);
}
/// Accesses the tensor reference pointing to data
TensorRef_t& ref() { return TensorView_t::ref(); }
/// Accesses the tensor reference pointing to data
TensorRef_t const& ref() const { return TensorView_t::ref(); }
/// Assigns a tensor view
HostTensorView& operator=(TensorView_t const& _tensor) {
reset(_tensor.ref(), _tensor.size());
return *this;
}
/// Returns the index of an element
Offset_t offset(Coord_t const& coord) const { return TensorView_t::offset(coord); }
/// Determines whether a location is within a tensor
bool contains(Coord_t const& coord) const { return TensorView_t::contains(coord); }
/// Element-wise accessor
T& at(Coord_t const& coord) const { return TensorView_t::at(coord); }
/// Element-wise accessor
T& operator[](Coord_t const& coord) const { return at(coord); }
/// Accesses an element with a raw offset
T& at(int idx) const { return TensorView_t::at(idx); }
/// Accesses an element with a raw offset
T& operator[](int idx) const { return at(idx); }
/// Returns a Tensor_view given location and size quantities
TensorView_t subview(Coord_t const& location, Coord_t size) const {
return TensorView_t::subview(location, size);
}
/// Recurses through all dimensions and applies a unary operation in place
template <typename F>
void elementwise_in_place(F& op, int dim = 0, Offset_t dst_offset_base = 0) {
Offset_t dst_offset = dst_offset_base;
for (int idx = 0; idx < size(dim); ++idx, dst_offset += stride(dim)) {
if (dim < Rank - 1) {
elementwise_in_place(op, dim + 1, dst_offset);
} else {
op(ref().data()[dst_offset]);
}
}
}
/// Recurses through all dimensions and applies a unary operator with no arguments
template <typename F>
void elementwise_stream(F& op, int dim = 0, Offset_t dst_offset_base = 0) {
Offset_t dst_offset = dst_offset_base;
for (int idx = 0; idx < size(dim); ++idx, dst_offset += stride(dim)) {
if (dim < Rank - 1) {
elementwise_stream(op, dim + 1, dst_offset);
} else {
ref().data()[dst_offset] = op();
}
}
}
/// Recurses through all dimensions and applies a unary operator, supplying the logical
/// coordinate within the tensor as an argument
template <typename F>
void elementwise_generate(F& op,
int dim = 0,
Offset_t dst_offset_base = 0,
Coord_t coord = Coord_t(0)) {
Offset_t dst_offset = dst_offset_base;
for (int idx = 0; idx < size(dim); ++idx, dst_offset += stride(dim)) {
coord.at(dim) = idx;
if (dim < Rank - 1) {
elementwise_generate(op, dim + 1, dst_offset, coord);
} else {
ref().data()[dst_offset] = op(coord);
}
}
}
/// Recurses through all dimensions and applies a unary operator, supplying the logical
/// coordinate within the tensor as an argument
template <typename F>
void elementwise_visit(F& op,
int dim = 0,
Offset_t dst_offset_base = 0,
Coord_t coord = Coord_t(0)) const {
Offset_t dst_offset = dst_offset_base;
for (int idx = 0; idx < size(dim); ++idx, dst_offset += stride(dim)) {
coord.at(dim) = idx;
if (dim < Rank - 1) {
elementwise_visit(op, dim + 1, dst_offset, coord);
} else {
op(ref().data()[dst_offset], coord);
}
}
}
/// Recurses through all dimensions and applies a binary operation
template <typename Src, typename F>
bool elementwise_in_place(F& op,
TensorView<Src> const& tensor,
int dim = 0,
Offset_t dst_offset_base = 0,
Offset_t src_offset_base = 0) {
Offset_t dst_offset = dst_offset_base;
Offset_t src_offset = src_offset_base;
if (size().at(dim) != tensor.size().at(dim)) {
return false;
}
for (int idx = 0; idx < size(dim);
++idx, dst_offset += stride(dim), src_offset += tensor.stride(dim)) {
if (dim < Rank - 1) {
elementwise_in_place(op, tensor, dim + 1, dst_offset, src_offset);
} else {
op(data()[dst_offset], tensor.data()[src_offset]);
}
}
return true;
}
template <typename Src>
struct LambdaBinaryAddition {
void operator()(T& a, Src b) const { a += T(b); }
};
template <typename Src>
struct LambdaBinarySubtraction {
void operator()(T& a, Src b) const { a -= T(b); }
};
template <typename Src>
struct LambdaBinaryMultiplication {
void operator()(T& a, Src b) const { a *= T(b); }
};
template <typename Src>
struct LambdaBinaryDivision {
void operator()(T& a, Src b) const { a /= T(b); }
};
/// Accumulate in place
template <typename Src>
TensorView<T>& operator+=(TensorView<Src> const& tensor) {
LambdaBinaryAddition<Src> op;
elementwise_in_place(op, tensor);
return *this;
}
/// Subtract in place
template <typename Src>
TensorView<T>& operator-=(TensorView<Src> const& tensor) {
LambdaBinarySubtraction<Src> op;
elementwise_in_place(op, tensor);
return *this;
}
/// Multiply in place
template <typename Src>
TensorView<T>& operator*=(TensorView<Src> const& tensor) {
LambdaBinaryMultiplication<Src> op;
elementwise_in_place(op, tensor);
return *this;
}
/// Divide in place
template <typename Src>
TensorView<T>& operator/=(TensorView<Src> const& tensor) {
LambdaBinaryDivision<Src> op;
elementwise_in_place(op, tensor);
return *this;
}
/// Comparison operator
struct EqualsOperator {
bool equal;
T eps;
EqualsOperator(T _epsilon) : equal(true), eps(_epsilon) {}
void operator()(T a, T b) {
if (std::abs(T(a - b)) > eps * std::max(std::abs(a), std::abs(b))) {
equal = false;
}
}
};
/// equality with epsilon tolerance
bool equals(TensorView<T> const& tensor, T epsilon) const {
EqualsOperator comparison_op(epsilon);
bool equal_size = elementwise_in_place(comparison_op, tensor);
return equal_size && comparison_op.equal;
}
/// Compares two values which are smaller or equal to a long long int
struct BitEqualsOperator {
bool equal;
long long eps;
uint64_t index;
BitEqualsOperator(long long _ulps_threshold) : equal(true), eps(_ulps_threshold), index(0) {}
void operator()(T a, T b) {
// convert bits to integers
long long bits_a = 0;
long long bits_b = 0;
*reinterpret_cast<T*>(&bits_a) = TypeTraits<T>::remove_negative_zero(a);
*reinterpret_cast<T*>(&bits_b) = TypeTraits<T>::remove_negative_zero(b);
// compute diff
long long ulps = bits_a - bits_b;
if (std::abs(ulps) > eps) {
equal = false;
}
index++;
}
};
/// equality with ulps tolerance
bool bit_equals(TensorView<T> const& tensor, long long ulps_threshold = 0) {
BitEqualsOperator comparison_op(ulps_threshold);
bool equal_size = elementwise_in_place(comparison_op, tensor);
return equal_size && comparison_op.equal;
}
/// Gets naked pointer to data
T* data() const { return TensorView_t::data(); }
/// Computes general matrix product among select dimensions of a tensor
/// Assumes:
/// D: number of independent GEMMs to compute
/// H: height of matrix
/// W: width of matrix
/// C: "channels" of each element
template <typename A, typename B, typename Ctype, typename Stype>
void gemm(TensorView<A> const& tensor_a, TensorView<B> const& tensor_b, Stype alpha, Stype beta) {
int const Batch = size(Dim_D);
int const M = size(Dim_H);
int const N = size(Dim_W);
int const K = tensor_a.size(Dim_W);
int const C = tensor_a.size(Dim_C);
// Sizes must match
if (tensor_a.size(Dim_H) != M || tensor_b.size(Dim_W) != N || tensor_b.size(Dim_C) != C ||
tensor_b.size(Dim_H) != K) {
return;
}
int const Mblock = 32;
int const Nblock = 32;
for (int batch = 0; batch < Batch; ++batch) {
for (int row_block = 0; row_block < M; row_block += Mblock) {
for (int col_block = 0; col_block < N; col_block += Nblock) {
Ctype accum[Mblock][Nblock];
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
accum[i][j] = Ctype(0);
}
}
for (int k_block = 0; k_block < K; ++k_block) {
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
int row = row_block + i;
int col = col_block + j;
if (row < M && col < N) {
for (int channel = 0; channel < C; ++channel) {
Ctype a(tensor_a.at(make_Coord(batch, row, k_block, channel)));
Ctype b(tensor_b.at(make_Coord(batch, k_block, col, channel)));
accum[i][j] += a * b;
}
}
}
}
}
for (int j = 0; j < Nblock; j++) {
for (int i = 0; i < Mblock; i++) {
int row = row_block + i;
int col = col_block + j;
Coord_t coord = make_Coord(batch, row, col, 0);
if (row < M && col < N) {
at(coord) =
Cast<Stype, T>::apply(alpha * Stype(accum[i][j]) + beta * Stype(at(coord)));
}
}
}
}
}
}
}
/// Fills with random data
template <typename Gen>
void fill_random(Gen generator) {
elementwise_stream(generator);
}
/// Procedurally assigns elements
template <typename Gen>
void generate(Gen generator) {
elementwise_generate(generator);
}
/// Procedurally visits elements
template <typename Gen>
void visit(Gen& generator) const {
elementwise_visit(generator);
}
/// Generator to fill a tensor with the identity matrix
struct LambdaFillIdentity {
T operator()(Coord_t const& coord) { return (coord.at(1) == coord.at(2) ? T(1) : T(0)); }
};
/// initializes with identity
void fill_identity() {
LambdaFillIdentity op;
elementwise_generate(op);
}
/// Lambda for fill_linear()
struct LambdaFillLinear {
Coord_t v_;
T offset_;
LambdaFillLinear(Coord_t const& _v, T _offset) : v_(_v), offset_(_offset) {}
T operator()(Coord_t const& coord) { return T(v_.template dot<int>(coord)) + offset_; }
};
/// computes elements as a linear combination of their coordinates
void fill_linear(Coord_t v, T offset = T(0)) {
LambdaFillLinear lambda(v, offset);
elementwise_generate(lambda);
}
/// computes elements as a linear combination of their coordinates
void fill_sequential(T v = T(1), T offset = T(0)) {
int const count = size().count();
for (int i = 0; i < count; ++i) {
data()[i] = T(i);
}
}
/// Returns a constant value
struct LambdaFillValue {
T value;
LambdaFillValue(T _value) : value(_value) {}
T operator()() { return value; }
};
/// fills with a value
void fill(T val = T(0)) {
LambdaFillValue op(val);
elementwise_stream(op);
}
/// Conversion from Src to T
template <typename Src>
struct LambdaAssign {
void operator()(T& a, Src b) const { a = T(b); }
};
/// copies from external data source and performs type conversion
template <typename Src>
void fill(TensorView<Src> const& tensor) {
LambdaAssign<Src> op;
elementwise_in_place(op, tensor);
}
/// Computes a norm
struct LambdaNorm {
double sum;
LambdaNorm() : sum(0) {}
void operator()(T const& element) {
double value(element);
double conj(element); // TODO - conjugates for complex
sum += value * conj;
}
};
/// Computes the norm of the matrix in double-precision
double norm() const {
LambdaNorm op;
elementwise_in_place(op);
return std::sqrt(op.sum);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace cutlass