219 lines
6.5 KiB
Plaintext
219 lines
6.5 KiB
Plaintext
/***************************************************************************************************
|
|
* Copyright (c) 2017-2021, NVIDIA CORPORATION. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are permitted
|
|
* provided that the following conditions are met:
|
|
* * Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice, this list of
|
|
* conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
|
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
#include "../common/cutlass_unit_test.h"
|
|
|
|
#include "cutlass/tensor_ref.h"
|
|
#include "cutlass/layout/matrix.h"
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(TensorRef, basic_rank2) {
|
|
int const M = 8;
|
|
int const N = 16;
|
|
|
|
int matrix_data[M * N] = {0};
|
|
|
|
cutlass::TensorRef<
|
|
int,
|
|
cutlass::IdentityTensorLayout<2> > matrix_ref(matrix_data, cutlass::make_Coord(N, 1));
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
matrix_ref.at(cutlass::make_Coord(m, n)) = m * N + n;
|
|
}
|
|
}
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
EXPECT_EQ(matrix_data[m * N + n], int(m * N + n));
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(TensorRef, rank2_column_major) {
|
|
int const M = 8;
|
|
int const N = 8;
|
|
|
|
int matrix_data[M * N];
|
|
|
|
cutlass::TensorRef<int, cutlass::layout::ColumnMajor> ref(matrix_data, M);
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
ref.at(cutlass::make_Coord(m, n)) = m * N + n;
|
|
}
|
|
}
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
EXPECT_EQ(matrix_data[m + n * M], int(m * N + n));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(TensorRef, rank2_row_major) {
|
|
int const M = 8;
|
|
int const N = 16;
|
|
|
|
int matrix_data[M * N] = { 0 };
|
|
|
|
cutlass::TensorRef<int, cutlass::layout::RowMajor> ref(matrix_data, N);
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
ref.at(cutlass::make_Coord(m, n)) = m * N + n;
|
|
}
|
|
}
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
EXPECT_EQ(matrix_data[m * N + n], int(m * N + n));
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(TensorRef, rank2_contiguous_dynamic) {
|
|
int const M = 8;
|
|
int const N = 16;
|
|
|
|
typedef cutlass::TensorRef<int, cutlass::layout::ContiguousMatrix> ContiguousTensorRef;
|
|
|
|
cutlass::layout::Matrix layouts[] = {
|
|
cutlass::layout::Matrix::kColumnMajor,
|
|
cutlass::layout::Matrix::kRowMajor
|
|
};
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
|
|
int matrix_data[M * N] = { 0 };
|
|
|
|
int row_stride;
|
|
int col_stride;
|
|
|
|
if (layouts[i] == cutlass::layout::Matrix::kColumnMajor) {
|
|
row_stride = 1;
|
|
col_stride = M;
|
|
}
|
|
else {
|
|
row_stride = N;
|
|
col_stride = 1;
|
|
}
|
|
|
|
// Use helper to determine stride vector from leading dimension
|
|
ContiguousTensorRef ref(
|
|
matrix_data,
|
|
cutlass::layout::ContiguousMatrix::packed(cutlass::make_Coord(M, N), layouts[i]));
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
ref.at(cutlass::make_Coord(m, n)) = m * N + n;
|
|
}
|
|
}
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
EXPECT_EQ(matrix_data[m * row_stride + n * col_stride], int(m * N + n));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(TensorRef, rank2_column_major_interleaved) {
|
|
int const M = 16;
|
|
int const N = 16;
|
|
int const kInterleave = 4;
|
|
|
|
int matrix_data[M * N] = {0};
|
|
|
|
// Define the Layout for a column-major interleaved matrix format
|
|
using Layout = cutlass::layout::ColumnMajorInterleaved<kInterleave>;
|
|
|
|
// Construct a TensorRef
|
|
cutlass::TensorRef<
|
|
int,
|
|
Layout> ref(matrix_data, Layout::packed(cutlass::make_Coord(M, N)));
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
ref.at(cutlass::make_Coord(m, n)) = m + n * M;
|
|
}
|
|
}
|
|
|
|
// Verify
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; n += kInterleave) {
|
|
for (int i = 0; i < kInterleave; ++i) {
|
|
EXPECT_EQ(matrix_data[m * kInterleave + n * M + i], int(m + (n + i) * M));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
TEST(TensorRef, rank2_row_major_interleaved) {
|
|
int const M = 16;
|
|
int const N = 16;
|
|
int const kInterleave = 4;
|
|
|
|
int matrix_data[M * N] = {0};
|
|
|
|
// Define the Layout for a row-major interleaved matrix format
|
|
using Layout = cutlass::layout::RowMajorInterleaved<kInterleave>;
|
|
|
|
// Construct a TensorRef
|
|
cutlass::TensorRef<
|
|
int,
|
|
Layout> ref(matrix_data, Layout::packed(cutlass::make_Coord(M, N)));
|
|
|
|
for (int m = 0; m < M; ++m) {
|
|
for (int n = 0; n < N; ++n) {
|
|
ref.at(cutlass::make_Coord(m, n)) = m + n * M;
|
|
}
|
|
}
|
|
|
|
// Verify
|
|
for (int m = 0; m < M; m += kInterleave) {
|
|
for (int n = 0; n < N; ++n) {
|
|
for (int i = 0; i < kInterleave; ++i) {
|
|
EXPECT_EQ(matrix_data[m * N + i + n * kInterleave], int((m + i) + n * M));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|