524 lines
18 KiB
C++
524 lines
18 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
/*! \file
|
|
\brief Functor performing linear combination operations used by epilogues.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "cutlass/cutlass.h"
|
|
#include "cutlass/numeric_types.h"
|
|
#include "cutlass/array.h"
|
|
#include "cutlass/functional.h"
|
|
#include "cutlass/numeric_conversion.h"
|
|
#include "cutlass/epilogue/thread/scale_type.h"
|
|
#include "cutlass/epilogue/thread/linear_combination_params.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cutlass {
|
|
namespace epilogue {
|
|
namespace thread {
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
/// Applies a linear combination operator to an array of elements.
|
|
///
|
|
/// D = alpha * accumulator + beta * source
|
|
///
|
|
template <
|
|
typename ElementOutput_, ///< Data type used to load and store tensors
|
|
int Count, ///< Number of elements computed per operation.
|
|
///< Usually it is 128/sizeof_bits<ElementOutput_>,
|
|
///< but we use 64 or 32 sometimes when there are not enough data to store
|
|
typename ElementAccumulator_ = ElementOutput_, ///< Accumulator data type
|
|
typename ElementCompute_ = ElementOutput_, ///< Data type used to compute linear combination
|
|
ScaleType::Kind Scale = ScaleType::Default, ///< Control Alpha and Beta scaling
|
|
FloatRoundStyle Round = FloatRoundStyle::round_to_nearest,
|
|
typename ElementSource_ = ElementOutput_
|
|
>
|
|
class LinearCombination {
|
|
public:
|
|
|
|
using ElementOutput = ElementOutput_;
|
|
using ElementSource = ElementSource_;
|
|
using ElementAccumulator = ElementAccumulator_;
|
|
using ElementCompute = ElementCompute_;
|
|
using ElementScalar = ElementCompute;
|
|
using ElementC = ElementSource_;
|
|
using ElementD = ElementOutput_;
|
|
|
|
static int const kCount = Count;
|
|
static const ScaleType::Kind kScale = Scale;
|
|
using FragmentOutput = Array<ElementOutput, kCount>;
|
|
using FragmentSource = Array<ElementSource, kCount>;
|
|
using FragmentAccumulator = Array<ElementAccumulator, kCount>;
|
|
using FragmentCompute = Array<ElementCompute, kCount>;
|
|
|
|
static FloatRoundStyle const kRound = Round;
|
|
|
|
/// Host-constructable parameters structure
|
|
struct Params
|
|
{
|
|
ElementCompute alpha; ///< scales accumulators
|
|
ElementCompute beta; ///< scales source tensor
|
|
ElementCompute const *alpha_ptr; ///< pointer to accumulator scalar - if not null, loads it from memory
|
|
ElementCompute const *beta_ptr; ///< pointer to source scalar - if not null, loads it from memory
|
|
ElementCompute const* const* alpha_ptr_array; ///< array of pointers to accumulator scalar per group/batch
|
|
ElementCompute const* const* beta_ptr_array; ///< array of pointers to source scalar per group/batch
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params():
|
|
alpha(ElementCompute(1)),
|
|
beta(ElementCompute(0)),
|
|
alpha_ptr(nullptr),
|
|
beta_ptr(nullptr),
|
|
alpha_ptr_array(nullptr),
|
|
beta_ptr_array(nullptr) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
ElementCompute alpha,
|
|
ElementCompute beta
|
|
):
|
|
alpha(alpha), beta(beta),
|
|
alpha_ptr(nullptr), beta_ptr(nullptr),
|
|
alpha_ptr_array(nullptr), beta_ptr_array(nullptr) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
ElementCompute alpha
|
|
):
|
|
alpha(alpha), beta(0),
|
|
alpha_ptr(nullptr), beta_ptr(nullptr),
|
|
alpha_ptr_array(nullptr), beta_ptr_array(nullptr) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
ElementCompute const *alpha_ptr,
|
|
ElementCompute const *beta_ptr
|
|
):
|
|
alpha(0), beta(0),
|
|
alpha_ptr(alpha_ptr), beta_ptr(beta_ptr),
|
|
alpha_ptr_array(nullptr), beta_ptr_array(nullptr) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
ElementCompute const *alpha_ptr
|
|
):
|
|
alpha(0), beta(0),
|
|
alpha_ptr(alpha_ptr), beta_ptr(nullptr),
|
|
alpha_ptr_array(nullptr), beta_ptr_array(nullptr) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
ElementCompute const* const* alpha_ptr_array,
|
|
ElementCompute const* const* beta_ptr_array
|
|
):
|
|
alpha(0), beta(0),
|
|
alpha_ptr(nullptr), beta_ptr(nullptr),
|
|
alpha_ptr_array(alpha_ptr_array), beta_ptr_array(beta_ptr_array) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
ElementCompute const* const* alpha_ptr_array
|
|
):
|
|
alpha(0), beta(0),
|
|
alpha_ptr(nullptr), beta_ptr(nullptr),
|
|
alpha_ptr_array(alpha_ptr_array), beta_ptr_array(nullptr) { }
|
|
};
|
|
|
|
private:
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
ElementCompute alpha_;
|
|
ElementCompute beta_;
|
|
|
|
public:
|
|
|
|
/// Constructs the function object, possibly loading from pointers in host memory
|
|
CUTLASS_HOST_DEVICE
|
|
LinearCombination(Params const ¶ms, int group_idx = 0) {
|
|
if (params.alpha_ptr_array != nullptr && params.alpha_ptr_array[group_idx] != nullptr) {
|
|
alpha_ = *(params.alpha_ptr_array[group_idx]);
|
|
}
|
|
else if (params.alpha_ptr != nullptr) {
|
|
alpha_ = *params.alpha_ptr;
|
|
}
|
|
else {
|
|
alpha_ = params.alpha;
|
|
}
|
|
if (params.beta_ptr_array != nullptr && params.beta_ptr_array[group_idx] != nullptr) {
|
|
beta_ = *(params.beta_ptr_array[group_idx]);
|
|
}
|
|
else if (params.beta_ptr != nullptr) {
|
|
beta_ = *params.beta_ptr;
|
|
}
|
|
else {
|
|
beta_ = params.beta;
|
|
}
|
|
}
|
|
|
|
/// Returns true if source is needed
|
|
CUTLASS_HOST_DEVICE
|
|
bool is_source_needed() const {
|
|
if (Scale == ScaleType::NoBetaScaling) return true;
|
|
|
|
if (Scale == ScaleType::OnlyAlphaScaling) return false;
|
|
|
|
if (Scale == ScaleType::Nothing) return false;
|
|
|
|
return beta_ != ElementCompute(0);
|
|
}
|
|
|
|
/// Functionally required for serial reduction in the epilogue
|
|
CUTLASS_HOST_DEVICE
|
|
void set_k_partition(int k_partition, int k_partition_count) {
|
|
if (k_partition) {
|
|
beta_ = ElementCompute(1);
|
|
}
|
|
}
|
|
|
|
/// Computes linear scaling with source: D = alpha * accumulator + beta * source
|
|
CUTLASS_HOST_DEVICE
|
|
FragmentOutput operator()(
|
|
FragmentAccumulator const &accumulator,
|
|
FragmentSource const &source) const {
|
|
|
|
// Convert source to internal compute numeric type
|
|
NumericArrayConverter<ElementCompute, ElementSource, kCount, Round> source_converter;
|
|
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
|
|
|
|
// Convert to destination numeric type
|
|
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
|
|
|
|
FragmentCompute converted_source = source_converter(source);
|
|
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
|
|
|
|
if (Scale == ScaleType::Nothing)
|
|
return destination_converter(converted_accumulator);
|
|
|
|
// Perform binary operations
|
|
FragmentCompute intermediate;
|
|
|
|
multiplies<FragmentCompute> mul_add_source;
|
|
multiply_add<FragmentCompute> mul_add_accumulator;
|
|
|
|
if (Scale == ScaleType::NoBetaScaling)
|
|
intermediate = converted_source;
|
|
else
|
|
intermediate = mul_add_source(beta_, converted_source); // X = beta * C + uniform
|
|
|
|
intermediate = mul_add_accumulator(alpha_, converted_accumulator, intermediate); // D = alpha * Accum + X
|
|
|
|
return destination_converter(intermediate);
|
|
}
|
|
|
|
/// Computes linear scaling: D = alpha * accumulator
|
|
CUTLASS_HOST_DEVICE
|
|
FragmentOutput operator()(
|
|
FragmentAccumulator const &accumulator) const {
|
|
|
|
// Convert source to interal compute numeric type
|
|
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
|
|
|
|
// Convert to destination numeric type
|
|
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
|
|
|
|
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
|
|
|
|
if (Scale == ScaleType::Nothing)
|
|
return destination_converter(converted_accumulator);
|
|
|
|
// Perform binary operations
|
|
FragmentCompute intermediate;
|
|
multiplies<FragmentCompute> mul_accumulator;
|
|
|
|
intermediate = mul_accumulator(alpha_, converted_accumulator); // D = alpha * Accum
|
|
|
|
return destination_converter(intermediate);
|
|
}
|
|
|
|
//
|
|
// Specializations for scalar (for use with cute::collective::DefaultEpilogue)
|
|
//
|
|
CUTLASS_HOST_DEVICE
|
|
ElementD operator()(ElementAccumulator const accumulator, ElementC const source) const {
|
|
// Convert everything to Compute type, do compute, and then store to output type
|
|
NumericConverter<ElementCompute, ElementAccumulator, Round> accumulator_converter;
|
|
[[maybe_unused]] NumericConverter<ElementCompute, ElementC, Round> source_converter;
|
|
NumericConverter<ElementD, ElementCompute, Round> destination_converter;
|
|
|
|
// Convert to destination numeric type
|
|
|
|
ElementCompute converted_accumulator = accumulator_converter(accumulator);
|
|
if constexpr (Scale == ScaleType::Nothing) {
|
|
return destination_converter(converted_accumulator);
|
|
}
|
|
|
|
// Perform binary operations
|
|
ElementCompute intermediate;
|
|
multiplies<ElementCompute> multiply;
|
|
multiply_add<ElementCompute> madd;
|
|
|
|
if constexpr (Scale == ScaleType::NoBetaScaling) {
|
|
intermediate = source_converter(source);
|
|
}
|
|
else {
|
|
intermediate = multiply(beta_, source); // X = beta * C + uniform
|
|
}
|
|
|
|
intermediate = madd(alpha_, converted_accumulator, intermediate); // D = alpha * Accum + X
|
|
return destination_converter(intermediate);
|
|
}
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
ElementD operator()(ElementAccumulator const accumulator) const {
|
|
// Convert everything to Compute type, do compute, and then store to output type
|
|
NumericConverter<ElementCompute, ElementAccumulator, Round> accumulator_converter;
|
|
NumericConverter<ElementD, ElementCompute, Round> destination_converter;
|
|
ElementCompute converted_accumulator = accumulator_converter(accumulator);
|
|
|
|
// Convert to destination numeric type
|
|
if constexpr (Scale == ScaleType::Nothing) {
|
|
return destination_converter(converted_accumulator);
|
|
}
|
|
|
|
// Perform binary operations
|
|
ElementCompute intermediate;
|
|
multiplies<ElementCompute> multiply;
|
|
|
|
intermediate = multiply(alpha_, accumulator); // D = alpha * Accum
|
|
return destination_converter(intermediate);
|
|
}
|
|
};
|
|
|
|
/// Applies a linear combination operator to an array of elements.
|
|
///
|
|
/// D = vector_alpha * accumulator + (optional) vector_beta/scalar_beta * source
|
|
///
|
|
template <
|
|
typename ElementOutput_, ///< Data type used to load and store tensors
|
|
int Count, ///< Number of elements computed per operation.
|
|
typename ElementAccumulator_, ///< Accumulator data type
|
|
typename ElementCompute_, ///< Data type used to compute linear combination
|
|
FloatRoundStyle Round,
|
|
typename ElementSource_
|
|
>
|
|
class LinearCombination<ElementOutput_,
|
|
Count,
|
|
ElementAccumulator_,
|
|
ElementCompute_,
|
|
ScaleType::PerChannelScaling,
|
|
Round,
|
|
ElementSource_> {
|
|
public:
|
|
|
|
using ElementOutput = ElementOutput_;
|
|
using ElementSource = ElementSource_;
|
|
using ElementAccumulator = ElementAccumulator_;
|
|
using ElementCompute = ElementCompute_;
|
|
using ElementC = ElementSource_;
|
|
using ElementD = ElementOutput_;
|
|
|
|
static int const kCount = Count;
|
|
static const ScaleType::Kind kScale = ScaleType::PerChannelScaling;
|
|
static constexpr bool IsPerChannelScalingSupported = true;
|
|
|
|
using FragmentOutput = Array<ElementOutput, kCount>;
|
|
using FragmentSource = Array<ElementSource, kCount>;
|
|
using FragmentAccumulator = Array<ElementAccumulator, kCount>;
|
|
using FragmentCompute = Array<ElementCompute, kCount>;
|
|
|
|
static FloatRoundStyle const kRound = Round;
|
|
|
|
/// Host-constructable parameters structure
|
|
struct Params
|
|
{
|
|
ElementCompute const *alpha_ptr; ///< pointer to accumulator vector
|
|
ElementCompute const *beta_ptr; ///< pointer to source vector
|
|
ElementCompute beta; ///< scales source tensor
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params():
|
|
alpha_ptr(nullptr),
|
|
beta_ptr(nullptr),
|
|
beta(ElementCompute(0)) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
ElementCompute const *alpha_ptr,
|
|
ElementCompute const *beta_ptr
|
|
):
|
|
alpha_ptr(alpha_ptr), beta_ptr(beta_ptr), beta(ElementCompute(0)) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
ElementCompute const *alpha_ptr
|
|
):
|
|
alpha_ptr(alpha_ptr), beta_ptr(nullptr), beta(ElementCompute(0)) { }
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
Params(
|
|
ElementCompute const *alpha_ptr,
|
|
ElementCompute beta
|
|
):
|
|
alpha_ptr(alpha_ptr), beta_ptr(nullptr), beta(beta) { }
|
|
|
|
};
|
|
|
|
private:
|
|
|
|
//
|
|
// Data members
|
|
//
|
|
|
|
ElementCompute const* beta_ptr_ = nullptr;
|
|
ElementCompute beta_ = 0;
|
|
|
|
public:
|
|
|
|
/// Constructs the function object
|
|
CUTLASS_HOST_DEVICE
|
|
LinearCombination(Params const& params) {
|
|
if (params.beta_ptr) {
|
|
beta_ptr_ = params.beta_ptr;
|
|
}
|
|
else {
|
|
beta_ = params.beta;
|
|
}
|
|
}
|
|
|
|
/// Returns true if source is needed
|
|
CUTLASS_HOST_DEVICE
|
|
bool is_source_needed() const {
|
|
return beta_ptr_ != nullptr || beta_ != ElementCompute(0);
|
|
}
|
|
|
|
CUTLASS_HOST_DEVICE
|
|
bool is_beta_vector() const {
|
|
return beta_ptr_ != nullptr;
|
|
}
|
|
|
|
/// Computes linear scaling with source: D = vector_alpha * accumulator + vector_beta * source
|
|
CUTLASS_HOST_DEVICE
|
|
FragmentOutput operator()(
|
|
FragmentAccumulator const& accumulator,
|
|
FragmentSource const& source,
|
|
FragmentCompute const& valpha,
|
|
FragmentCompute const& vbeta) const {
|
|
// Convert source to internal compute numeric type
|
|
NumericArrayConverter<ElementCompute, ElementSource, kCount, Round> source_converter;
|
|
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
|
|
|
|
// Convert to destination numeric type
|
|
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
|
|
|
|
FragmentCompute converted_source = source_converter(source);
|
|
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
|
|
|
|
// Perform binary operations
|
|
FragmentCompute intermediate;
|
|
|
|
multiplies<FragmentCompute> mul_add_source;
|
|
multiply_add<FragmentCompute> mul_add_accumulator;
|
|
|
|
intermediate = mul_add_source(vbeta, converted_source); // X = vector_beta * C + uniform
|
|
|
|
intermediate = mul_add_accumulator(valpha, converted_accumulator, intermediate); // D = vector_alpha * Accum + X
|
|
|
|
return destination_converter(intermediate);
|
|
}
|
|
|
|
/// Computes linear scaling with source: D = vector_alpha * accumulator + scalar_beta(from host) * source
|
|
CUTLASS_HOST_DEVICE
|
|
FragmentOutput operator()(
|
|
FragmentAccumulator const& accumulator,
|
|
FragmentSource const& source,
|
|
FragmentCompute const& valpha) const {
|
|
// Convert source to internal compute numeric type
|
|
NumericArrayConverter<ElementCompute, ElementSource, kCount, Round> source_converter;
|
|
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
|
|
|
|
// Convert to destination numeric type
|
|
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
|
|
|
|
FragmentCompute converted_source = source_converter(source);
|
|
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
|
|
|
|
// Perform binary operations
|
|
FragmentCompute intermediate;
|
|
|
|
multiplies<FragmentCompute> mul_add_source;
|
|
multiply_add<FragmentCompute> mul_add_accumulator;
|
|
|
|
|
|
intermediate = mul_add_source(beta_, converted_source); // X = scalar_beta * C + uniform
|
|
|
|
intermediate = mul_add_accumulator(valpha, converted_accumulator, intermediate); // D = vector_alpha * Accum + X
|
|
|
|
return destination_converter(intermediate);
|
|
}
|
|
|
|
/// Computes linear scaling: D = vector_alpha * accumulator
|
|
CUTLASS_HOST_DEVICE
|
|
FragmentOutput operator()(
|
|
FragmentAccumulator const& accumulator,
|
|
FragmentCompute const& valpha) const {
|
|
// Convert source to interal compute numeric type
|
|
NumericArrayConverter<ElementCompute, ElementAccumulator, kCount, Round> accumulator_converter;
|
|
|
|
// Convert to destination numeric type
|
|
NumericArrayConverter<ElementOutput, ElementCompute, kCount, Round> destination_converter;
|
|
|
|
FragmentCompute converted_accumulator = accumulator_converter(accumulator);
|
|
|
|
// Perform binary operations
|
|
FragmentCompute intermediate;
|
|
multiplies<FragmentCompute> mul_accumulator;
|
|
|
|
intermediate = mul_accumulator(valpha, converted_accumulator); // D = vector_alpha * Accum
|
|
|
|
return destination_converter(intermediate);
|
|
}
|
|
};
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
} // namespace thread
|
|
} // namespace epilogue
|
|
} // namespace cutlass
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|