cutlass/include/cutlass/epilogue/thread/linear_combination_residual_block.h
2024-01-16 14:37:22 -05:00

302 lines
12 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Epilogue functor specialized for residual blocks in deep neural networks.
*/
#pragma once
#include "cutlass/array.h"
#include "cutlass/functional.h"
#include "cutlass/numeric_conversion.h"
#include "cutlass/epilogue/thread/detail.hpp"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace epilogue {
namespace thread {
/// Models a residual block of the form: UnaryOp(BinaryOp(BinaryOp(ActivationOp(TensorOp(X) + bias), residual1), residual2))
template <typename ElementOutput_, typename ElementAccumulator_,
typename ElementCompute_, typename ElementC_, int ElementsPerAccess,
template <typename T> class ActivationOp_,
template <typename T> class BinaryOp1_,
template <typename T> class UnaryOp_,
template <typename T> class BinaryOp2_ = detail::NoOp,
bool StoreT_ = false,
typename ElementVector_ = ElementC_>
class LinearCombinationResidualBlock {
public:
static bool const kIsSingleSource = false;
using ElementOutput = ElementC_;
using ElementC = ElementC_;
using ElementAccumulator = ElementAccumulator_;
using ElementCompute = ElementCompute_;
using ElementVector = ElementVector_;
static int const kElementsPerAccess = ElementsPerAccess;
static int const kCount = kElementsPerAccess;
using UnaryOp = UnaryOp_<Array<ElementCompute, kCount>>;
using BinaryOp1 = BinaryOp1_<Array<ElementCompute, kCount>>;
using BinaryOp2 = BinaryOp2_<Array<ElementCompute, kCount>>;
using ActivationOp = ActivationOp_<Array<ElementCompute, kCount>>;
using FragmentAccumulator = Array<ElementAccumulator, kElementsPerAccess>;
using FragmentCompute = Array<ElementCompute, kElementsPerAccess>;
using FragmentC = Array<ElementC, kElementsPerAccess>;
using FragmentOutput = Array<ElementOutput, kElementsPerAccess>;
using ElementZ = ElementOutput_;
using ElementT = ElementZ;
using FragmentZ = Array<ElementZ, kElementsPerAccess>;
using FragmentT = Array<ElementT, kElementsPerAccess>;
static bool const kIsHeavy = true;
static bool const kStoreZ = true;
static bool const kStoreT = StoreT_;
/// Host-constructable parameters structure
struct Params {
ElementCompute alpha; ///< scales accumulators
ElementCompute beta; ///< scales residual input
ElementCompute const *alpha_ptr{nullptr}; ///< pointer to accumulator scalar - if not null, loads it from memory
ElementCompute const *beta_ptr{nullptr}; ///< pointer to residual scalar - if not null, loads it from memory
CUTLASS_HOST_DEVICE
Params() : alpha(ElementCompute(1)), beta(ElementCompute(1)) {}
CUTLASS_HOST_DEVICE
Params(ElementCompute alpha, ElementCompute beta)
: alpha(alpha), beta(beta) {}
CUTLASS_HOST_DEVICE
Params(ElementCompute const *alpha_ptr, ElementCompute const *beta_ptr)
: alpha(0), beta(0), alpha_ptr(alpha_ptr), beta_ptr(beta_ptr) {}
};
private:
ElementCompute alpha_;
ElementCompute beta_;
bool skip_elementwise_;
public:
/// Constructor from Params
CUTLASS_HOST_DEVICE
LinearCombinationResidualBlock(Params const &params) {
alpha_ = (params.alpha_ptr ? *params.alpha_ptr : params.alpha);
beta_ = (params.beta_ptr ? *params.beta_ptr : params.beta);
skip_elementwise_ = false;
}
/// The "source" tensor corresponds to the residual input
CUTLASS_HOST_DEVICE
bool is_source_needed() const { return true; }
/// Functionally required for serial reduction in the epilogue
/// IMPORTANT: Split-k is supported only when ActivationOp is Identity.
CUTLASS_HOST_DEVICE
void set_k_partition(int k_partition, int k_partition_count) {
if (k_partition) {
beta_ = ElementCompute(1);
}
if (k_partition != k_partition_count - 1) {
skip_elementwise_ = true;
}
}
/// Applies the operation UnaryOp(BinaryOp(BinaryOp(ActivationOp(AB + bias), residual1), residual2))
CUTLASS_HOST_DEVICE
void operator()(FragmentOutput &frag_Z, FragmentOutput &, FragmentAccumulator const &AB,
FragmentC const &residual1, FragmentC const &residual2,
FragmentCompute const &bias) const {
UnaryOp unary_op;
BinaryOp1 binary_op1;
BinaryOp2 binary_op2;
ActivationOp activation;
FragmentCompute tmp_Accum =
NumericArrayConverter<ElementCompute, ElementAccumulator, kElementsPerAccess>()(AB);
FragmentCompute tmp_residual1 =
NumericArrayConverter<ElementCompute, ElementC, kElementsPerAccess>()(residual1);
FragmentCompute tmp_residual2 =
NumericArrayConverter<ElementCompute, ElementC, kElementsPerAccess>()(residual2);
FragmentCompute z =
binary_op2(binary_op1(activation(alpha_ * tmp_Accum + bias), beta_ * tmp_residual1), beta_ * tmp_residual2);
FragmentCompute result_Z = skip_elementwise_ ? z : unary_op(z);
NumericArrayConverter<ElementOutput, ElementCompute, kElementsPerAccess> convert_z;
frag_Z = convert_z(result_Z);
}
/// Should never be called
CUTLASS_HOST_DEVICE
void operator()(FragmentOutput &, FragmentOutput &, FragmentAccumulator const &,
FragmentCompute const &) const {}
};
/// Models a residual block of the form: UnaryOp(BinaryOp(ActivationOp(TensorOp(X) + bias), residual))
template <typename ElementOutput_, typename ElementAccumulator_,
typename ElementCompute_, typename ElementC_, int ElementsPerAccess,
template <typename T> class ActivationOp_,
template <typename T> class BinaryOp1_,
template <typename T> class UnaryOp_,
bool StoreT_,
typename ElementVector_>
class LinearCombinationResidualBlock<ElementOutput_, ElementAccumulator_,
ElementCompute_, ElementC_, ElementsPerAccess,
ActivationOp_, BinaryOp1_, UnaryOp_,
detail::NoOp, StoreT_, ElementVector_> {
public:
static bool const kIsSingleSource = true;
using ElementOutput = ElementC_;
using ElementC = ElementC_;
using ElementAccumulator = ElementAccumulator_;
using ElementCompute = ElementCompute_;
using ElementVector = ElementVector_;
static int const kElementsPerAccess = ElementsPerAccess;
static int const kCount = kElementsPerAccess;
using UnaryOp = UnaryOp_<Array<ElementCompute, kCount>>;
using BinaryOp = BinaryOp1_<Array<ElementCompute, kCount>>;
using ActivationOp = ActivationOp_<Array<ElementCompute, kCount>>;
using FragmentAccumulator = Array<ElementAccumulator, kElementsPerAccess>;
using FragmentCompute = Array<ElementCompute, kElementsPerAccess>;
using FragmentC = Array<ElementC, kElementsPerAccess>;
using FragmentOutput = Array<ElementOutput, kElementsPerAccess>;
using ElementZ = ElementOutput_;
using ElementT = ElementZ;
using FragmentZ = Array<ElementZ, kElementsPerAccess>;
using FragmentT = Array<ElementT, kElementsPerAccess>;
static bool const kIsHeavy = true;
static bool const kStoreZ = true;
static bool const kStoreT = StoreT_;
/// Host-constructable parameters structure
struct Params {
ElementCompute alpha; ///< scales accumulators
ElementCompute beta; ///< scales residual input
ElementCompute const *alpha_ptr{nullptr}; ///< pointer to accumulator scalar - if not null, loads it from memory
ElementCompute const *beta_ptr{nullptr}; ///< pointer to residual scalar - if not null, loads it from memory
CUTLASS_HOST_DEVICE
Params() : alpha(ElementCompute(1)), beta(ElementCompute(1)) {}
CUTLASS_HOST_DEVICE
Params(ElementCompute alpha, ElementCompute beta)
: alpha(alpha), beta(beta) {}
CUTLASS_HOST_DEVICE
Params(ElementCompute const *alpha_ptr, ElementCompute const *beta_ptr)
: alpha(0), beta(0), alpha_ptr(alpha_ptr), beta_ptr(beta_ptr) {}
};
private:
ElementCompute alpha_;
ElementCompute beta_;
bool skip_elementwise_;
public:
/// Constructor from Params
CUTLASS_HOST_DEVICE
LinearCombinationResidualBlock(Params const &params) {
alpha_ = (params.alpha_ptr ? *params.alpha_ptr : params.alpha);
beta_ = (params.beta_ptr ? *params.beta_ptr : params.beta);
skip_elementwise_ = false;
}
/// The "source" tensor corresponds to the residual input
CUTLASS_HOST_DEVICE
bool is_source_needed() const { return true; }
/// Functionally required for serial reduction in the epilogue
/// IMPORTANT: Split-k is supported only when ActivationOp is Identity.
CUTLASS_HOST_DEVICE
void set_k_partition(int k_partition, int k_partition_count) {
if (k_partition) {
beta_ = ElementCompute(1);
}
if (k_partition != k_partition_count - 1) {
skip_elementwise_ = true;
}
}
/// Applies the operation UnaryOp(BinaryOp(ActivationOp(AB + bias), residual))
CUTLASS_HOST_DEVICE
void operator()(FragmentOutput &frag_Z, FragmentOutput &, FragmentAccumulator const &AB,
FragmentC const &residual,
FragmentCompute const &bias) const {
UnaryOp unary_op;
BinaryOp binary_op;
ActivationOp activation;
FragmentCompute tmp_Accum =
NumericArrayConverter<ElementCompute, ElementAccumulator, kElementsPerAccess>()(AB);
FragmentCompute tmp_residual =
NumericArrayConverter<ElementCompute, ElementC, kElementsPerAccess>()(residual);
FragmentCompute z =
binary_op(activation(alpha_ * tmp_Accum + bias), beta_ * tmp_residual);
FragmentCompute result_Z = skip_elementwise_ ? z : unary_op(z);
NumericArrayConverter<ElementOutput, ElementCompute, kElementsPerAccess> convert_z;
frag_Z = convert_z(result_Z);
}
/// Should never be called
CUTLASS_HOST_DEVICE
void operator()(FragmentOutput &, FragmentOutput &, FragmentAccumulator const &,
FragmentCompute const &) const {}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace thread
} // namespace epilogue
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////