cutlass/examples/58_ada_fp8_gemm/ada_fp8_gemm.cu
2024-03-19 17:51:04 -04:00

827 lines
28 KiB
Plaintext

/***************************************************************************************************
* Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Example of running an Ada FP8 GEMM.
In addition to using FP8 Tensor Core instructions, the Ada FP8 GEMM uses a distinct epilogue
that enables additional scaling of operands/outputs, storing a pre-activation-function output
tensor (called the "auxiliary" output), and computing the absolute maximum value of the
outputs.
Pseudocode for this epilogue is as follows:
Aux = ((alpha * scale_a * scale_b) * accumulator) + ((beta * scale_c) * source) + bias
D = activation(Aux)
if Aux is fp8 type:
abs_max_output = max( abs(aux) | (for every aux in Aux))
Aux = scale_aux * Aux
endif
if D is fp8 type:
abs_max_output = max( abs(d) | (for every d in D))
D = scale_d * D
endif
Parameter Aux is optionally stored to global memory
*/
#include <iostream>
#include <fstream>
#include <sstream>
#include "cutlass/cutlass.h"
#include "cutlass/numeric_conversion.h"
#include "cutlass/util/command_line.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/host/gemm_complex.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/util/distribution.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_norm.h"
#include "cutlass/util/reference/host/gemm.h"
#include "cutlass/epilogue/thread/activation.h"
#include "cutlass/epilogue/thread/linear_combination_generic_with_scaling.h"
#include "cutlass/gemm/device/gemm_universal_with_absmax.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/matrix_coord.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
using ElementA = cutlass::float_e4m3_t;
using ElementB = cutlass::float_e4m3_t;
using ElementOutput = cutlass::float_e4m3_t;
using ElementAuxOutput = ElementOutput;
using ElementAccumulator = float;
using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutC = cutlass::layout::RowMajor;
static int const kStages = 3;
static int const kAlignmentA = 16;
static int const kAlignmentB = 16;
using EpilogueOutputOp = cutlass::epilogue::thread::LinearCombinationGenericWithScalingAndAbsMax<
cutlass::epilogue::thread::ReLu,
ElementOutput,
ElementAuxOutput,
128 / cutlass::sizeof_bits<ElementOutput>::value,
ElementAccumulator,
ElementAccumulator
>;
template <typename MathOperator>
using Gemm_ = cutlass::gemm::device::GemmUniversalWithAbsMax<
ElementA, LayoutA, ElementB, LayoutB, ElementOutput, LayoutC,
ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm89,
cutlass::gemm::GemmShape<128, 256, 64>, cutlass::gemm::GemmShape<64, 64, 64>, cutlass::gemm::GemmShape<16, 8, 32>,
EpilogueOutputOp, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, kStages,
kAlignmentA, kAlignmentB, MathOperator
>;
using ElementAbsmax = typename EpilogueOutputOp::ElementAbsmax;
// Command line options parsing
struct Options {
bool help;
bool error;
bool reference_check;
cutlass::gemm::GemmCoord problem_size;
int iterations;
int warmup_iterations;
bool scale_A;
bool scale_B;
bool scale_C;
float alpha;
float beta;
Options():
help(false),
error(false),
reference_check(false),
iterations(20),
warmup_iterations(5),
scale_A(true),
scale_B(true),
scale_C(true),
alpha(1.f),
beta(0.f)
{ }
// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);
if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}
cmd.get_cmd_line_argument("iterations", iterations, 20);
cmd.get_cmd_line_argument("warmup_iterations", warmup_iterations, 5);
cmd.get_cmd_line_argument("reference-check", reference_check, false);
cmd.get_cmd_line_argument("scale-A", scale_A, true);
cmd.get_cmd_line_argument("scale-B", scale_B, true);
cmd.get_cmd_line_argument("scale-C", scale_C, true);
cmd.get_cmd_line_argument("alpha", alpha, 1.f);
cmd.get_cmd_line_argument("beta", beta, 0.f);
int m, n, k;
cmd.get_cmd_line_argument("m", m, 1024);
cmd.get_cmd_line_argument("n", n, 1024);
cmd.get_cmd_line_argument("k", k, 1024);
problem_size = cutlass::gemm::GemmCoord{m, n, k};
}
/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {
out << "58_ada_fp8_gemm\n\n"
<< " This example executes a GEMM using Ada FP8 Tensor Core operations. In addition to performing\n"
<< " a normal GEMM, the kernel performs the following operations:\n"
<< " Aux = ((alpha * scale_a * scale_b) * accumulator) + ((beta * scale_c) * source) + bias\n"
<< " D = activation(Aux)\n\n"
<< " if Aux is fp8:\n"
<< " abs_max_output = max( abs(aux) | (for every aux in Aux) )\n"
<< " Aux = scale_aux * Aux\n\n"
<< " if D is fp8 type:\n"
<< " abs_max_output = max( abs(d) | (for every d in D) )\n"
<< " D = scale_d * D\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --m=<int> Sets the M dimension of the GEMM\n"
<< " --n=<int> Sets the N dimension of the GEMM\n"
<< " --k=<int> Sets the K dimension of the GEMM\n"
<< " --scale-A=<bool> Whether to apply a scaling factor to operand A (default: true)\n"
<< " --scale-B=<bool> Whether to apply a scaling factor to operand B (default: true)\n"
<< " --scale-C=<bool> Whether to apply a scaling factor to operand C (default: true)\n"
<< " --iterations=<int> Number of profiling iterations to perform\n"
<< " --warmup-iterations=<int> Number of warmup iterations to perform\n"
<< " --reference-check=<bool> If true, performs reference check\n";
return out;
}
/// Compute performance in GFLOP/s
float gflops(float runtime_s) const {
// Two flops per multiply-add
return 2.0f * float(problem_size.product()) / float(1.0e9) / runtime_s;
}
};
/// Helper class to run the kernel
template <typename Gemm>
struct TestbedRunner {
using ElementAccumulator = typename Gemm::ElementAccumulator;
using ElementCompute = typename Gemm::GemmKernel::Epilogue::OutputOp::ElementCompute;
using ElementScalingFactor = typename Gemm::EpilogueOutputOp::ElementScalingFactor;
static bool const kScaleAux = Gemm::EpilogueOutputOp::kIsScalingAndAmaxAuxOutputNeeded;
static bool const kScaleOutput = Gemm::EpilogueOutputOp::kIsScalingAndAmaxOutputNeeded;
/// Initialization
cutlass::Distribution::Kind init_A;
cutlass::Distribution::Kind init_B;
cutlass::Distribution::Kind init_C;
uint64_t seed;
cutlass::HostTensor<typename Gemm::ElementA, typename Gemm::LayoutA> tensor_A;
cutlass::HostTensor<typename Gemm::ElementB, typename Gemm::LayoutB> tensor_B;
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_C;
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementAuxOutput, typename Gemm::LayoutC> tensor_Aux;
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementOutput, typename Gemm::LayoutC> tensor_D;
cutlass::HostTensor<typename Gemm::ElementC, typename Gemm::LayoutC> tensor_Vector;
cutlass::HostTensor<ElementAccumulator, typename Gemm::LayoutC> tmp_D;
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementOutput, typename Gemm::LayoutC> reference_D;
cutlass::HostTensor<typename Gemm::EpilogueOutputOp::ElementAuxOutput, typename Gemm::LayoutC> reference_Aux;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_A;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_B;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_C;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_D;
cutlass::HostTensor<ElementScalingFactor, typename Gemm::LayoutC> scale_Aux;
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> abs_max_Aux;
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> abs_max_D;
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> reference_abs_max_Aux;
cutlass::HostTensor<ElementAbsmax, typename Gemm::LayoutC> reference_abs_max_D;
//
// Methods
//
TestbedRunner(
bool scaleA = true,
bool scaleB = true,
bool scaleC = true,
cutlass::Distribution::Kind init_A_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_B_ = cutlass::Distribution::Uniform,
cutlass::Distribution::Kind init_C_ = cutlass::Distribution::Uniform,
uint64_t seed_ = 2080
):
init_A(init_A_), init_B(init_B_), init_C(init_C_), seed(seed_) { }
/// Helper to initialize scaling factors
template <typename Element, typename Layout>
bool initialize_scale_factor(cutlass::TensorView<Element, Layout> view, uint64_t seed, int bits=0) {
cutlass::reference::host::TensorFillRandomUniform(view, seed, double(1.), double(0.), bits);
return true;
}
/// Helper to initialize a tensor view
template <typename Element, typename Layout>
bool initialize_tensor(
cutlass::TensorView<Element, Layout> view,
cutlass::Distribution::Kind dist_kind,
uint64_t seed) {
if (dist_kind == cutlass::Distribution::Uniform) {
double scope_max, scope_min;
int bits_input = cutlass::sizeof_bits<Element>::value;
int bits_output = cutlass::sizeof_bits<typename Gemm::ElementC>::value;
if (bits_input == 1) {
scope_max = 2;
scope_min = 0;
} else if (bits_input <= 8) {
scope_max = 2;
scope_min = -2;
} else if (bits_output == 16) {
scope_max = 5;
scope_min = -5;
} else {
scope_max = 8;
scope_min = -8;
}
cutlass::reference::host::TensorFillRandomUniform(
view, seed, scope_max, scope_min, 0);
}
else if (dist_kind == cutlass::Distribution::Identity) {
cutlass::reference::host::TensorFillIdentity(view);
}
else if (dist_kind == cutlass::Distribution::Gaussian) {
cutlass::reference::host::TensorFillRandomGaussian(view, seed, 0, 0.5);
}
else if (dist_kind == cutlass::Distribution::Sequential) {
cutlass::reference::host::BlockFillSequential(
view.data(), view.capacity());
}
else {
std::cerr << "Not implemented";
return false;
}
return true;
}
/// Initializes data structures
void initialize(const Options& options) {
//
// Allocate the GEMM workspace
//
tensor_A.resize(options.problem_size.mk());
tensor_B.resize(options.problem_size.kn());
tensor_C.resize(options.problem_size.mn());
tensor_D.resize(options.problem_size.mn());
tensor_Vector.resize({1, options.problem_size.n()});
reference_D.resize(options.problem_size.mn(), false);
tmp_D.resize(options.problem_size.mn(), false);
initialize_tensor(tensor_A.host_view(), init_A, seed + 2019);
initialize_tensor(tensor_B.host_view(), init_B, seed + 2018);
initialize_tensor(tensor_C.host_view(), init_C, seed + 2017);
initialize_tensor(tensor_Vector.host_view(), init_C, seed + 2020);
// It is possible to randomly initialize to all zeros, so override this with non-zeros
// in the upper left corner of each operand.
cutlass::Coord<2> origin(0);
tensor_A.host_view().at(origin) = typename Gemm::ElementA(1);
tensor_B.host_view().at(origin) = typename Gemm::ElementB(1);
tensor_C.host_view().at(origin) = typename Gemm::ElementC(1);
tensor_Vector.host_view().at(origin) = typename Gemm::ElementC(1);
cutlass::reference::host::TensorFill(tensor_D.host_view());
cutlass::reference::host::TensorCopy(reference_D.host_view(), tensor_C.host_view());
tensor_A.sync_device();
tensor_B.sync_device();
tensor_C.sync_device();
tensor_D.sync_device();
tensor_Vector.sync_device();
int scale_bits = 2;
if (options.scale_A) {
scale_A.resize({1, 1});
initialize_scale_factor(scale_A.host_view(), seed + 2021, scale_bits);
scale_A.sync_device();
}
if (options.scale_B) {
scale_B.resize({1, 1});
initialize_scale_factor(scale_B.host_view(), seed + 2022, scale_bits);
scale_B.sync_device();
}
if (options.scale_C) {
scale_C.resize({1, 1});
initialize_scale_factor(scale_C.host_view(), seed + 2023, scale_bits);
scale_C.sync_device();
}
if (kScaleOutput) {
scale_D.resize({1, 1});
initialize_scale_factor(scale_D.host_view(), seed + 2024, scale_bits);
scale_D.sync_device();
abs_max_D.resize({1, 1});
cutlass::reference::host::TensorFill(abs_max_D.host_view());
abs_max_D.sync_device();
reference_abs_max_D.resize({1, 1});
}
if (kScaleAux) {
tensor_Aux.resize(options.problem_size.mn());
cutlass::reference::host::TensorFill(tensor_Aux.host_view());
tensor_Aux.sync_device();
scale_Aux.resize({1, 1});
initialize_scale_factor(scale_Aux.host_view(), seed + 2025, scale_bits);
scale_Aux.sync_device();
abs_max_Aux.resize({1, 1});
cutlass::reference::host::TensorFill(abs_max_Aux.host_view());
abs_max_Aux.sync_device();
reference_Aux.resize(options.problem_size.mn(), false);
reference_abs_max_Aux.resize({1, 1});
}
}
/// Compares computed reference with device reference and outputs to a file if incorrect
bool compare_reference(const Options& options) {
tensor_D.sync_host();
bool passed = cutlass::reference::host::TensorEquals(reference_D.host_view(), tensor_D.host_view());
if (kScaleAux) {
tensor_Aux.sync_host();
abs_max_Aux.sync_host();
passed &= cutlass::reference::host::TensorEquals(reference_Aux.host_view(), tensor_Aux.host_view());
passed &= cutlass::reference::host::TensorEquals(abs_max_Aux.host_view(), reference_abs_max_Aux.host_view());
}
if (kScaleOutput) {
abs_max_D.sync_host();
passed &= cutlass::reference::host::TensorEquals(abs_max_D.host_view(), reference_abs_max_D.host_view());
}
if (!passed) {
std::cerr << "Reference check failed" << std::endl;
std::string output_file = "testbed_with_amax_errors.txt";
std::ofstream file(output_file);
file
<< "problem: " << options.problem_size
<< ", alpha: " << options.alpha << ", beta: " << options.beta << "\n\n";
file
<< "A =\n" << tensor_A.host_view()
<< "\nB =\n" << tensor_B.host_view()
<< "\nC =\n" << tensor_C.host_view()
<< "\nVector =\n" << tensor_Vector.host_view()
<< "\nScaleA = " << scale_A.host_view()
<< "\nScaleB = " << scale_B.host_view()
<< "\nScaleC = " << scale_C.host_view()
<< "\nScaleD = " << scale_D.host_view()
<< "\nScaleAux = " << scale_Aux.host_view()
<< "\n\nReference D =\n" << reference_D.host_view()
<< "\nComputed D =\n" << tensor_D.host_view();
if (kScaleAux) {
file
<< "\n\nReference Aux =\n" << reference_Aux.host_view()
<< "\nComputed Aux =\n" << tensor_Aux.host_view()
<< "\n\nReference Absmax Aux = " << reference_abs_max_Aux.host_view()
<< "\nComputed Absmax Aux = " << abs_max_Aux.host_view();
}
if (kScaleOutput) {
file
<< "\n\nReference Absmax D = " << reference_abs_max_D.host_view()
<< "\nComputed Absmax D = " << abs_max_D.host_view();
}
std::cerr << "Dumped results to " << output_file << std::endl;
}
return passed;
}
/// Verifies the result is a GEMM
bool verify(const Options& options) {
cutlass::Coord<2> origin(0);
ElementCompute scaled_alpha = options.alpha;
if (options.scale_A) {
scaled_alpha *= scale_A.host_view().at(origin);
}
if (options.scale_B) {
scaled_alpha *= scale_B.host_view().at(origin);
}
ElementCompute scaled_beta = options.beta;
if (options.scale_C) {
scaled_beta *= scale_C.host_view().at(origin);
}
//
// Verify
//
cutlass::reference::host::GemmComplex<
typename Gemm::ElementA, typename Gemm::LayoutA,
typename Gemm::ElementB, typename Gemm::LayoutB,
typename Gemm::ElementC, typename Gemm::LayoutC,
ElementCompute, ElementAccumulator, ElementAccumulator
>(
options.problem_size,
scaled_alpha,
tensor_A.host_ref(),
Gemm::kTransformA,
tensor_B.host_ref(),
Gemm::kTransformB,
scaled_beta,
tensor_C.host_ref(),
tmp_D.host_ref(),
ElementAccumulator(0)
);
ElementCompute tmp_abs_max_Aux(0.);
ElementCompute tmp_abs_max_D(0.);
cutlass::NumericConverter<ElementCompute, typename Gemm::ElementC> cvt_c_to_compute;
cutlass::NumericConverter<ElementCompute, ElementAccumulator> cvt_accum_to_compute;
cutlass::NumericConverter<ElementAccumulator, ElementCompute> cvt_compute_to_accum;
cutlass::NumericConverter<typename Gemm::EpilogueOutputOp::ElementOutput, ElementCompute> cvt_compute_to_d;
cutlass::NumericConverter<typename Gemm::EpilogueOutputOp::ElementAuxOutput, ElementCompute> cvt_compute_to_aux;
cutlass::absolute_value_op<ElementCompute> abs;
cutlass::maximum_with_nan_propogation<ElementCompute> max;
cutlass::epilogue::thread::ReLu<ElementCompute> act;
ElementScalingFactor d_scale = kScaleOutput ? scale_D.host_view().at(origin) : ElementScalingFactor(1.);
for (int m = 0; m < options.problem_size.m(); ++m) {
for (int n = 0; n < options.problem_size.n(); ++n) {
ElementCompute intermediate = cvt_accum_to_compute(tmp_D.host_view().at({m, n}));
ElementCompute bias = cvt_c_to_compute(tensor_Vector.host_view().at({0, n}));
ElementCompute aux = intermediate + bias;
ElementCompute d = act(aux);
tmp_abs_max_Aux = max(abs(aux), tmp_abs_max_Aux);
tmp_abs_max_D = max(abs(d), tmp_abs_max_D);
reference_D.host_view().at({m, n}) = cvt_compute_to_d(d * d_scale);
if (kScaleAux) {
reference_Aux.host_view().at({m, n}) = cvt_compute_to_aux(aux * scale_Aux.host_view().at(origin));
}
}
}
if (kScaleAux) {
reference_abs_max_Aux.host_view().at(origin) = cvt_compute_to_accum(tmp_abs_max_Aux);
}
if (kScaleOutput) {
reference_abs_max_D.host_view().at(origin) = cvt_compute_to_accum(tmp_abs_max_D);
}
return compare_reference(options);
}
/// Returns true if the CUDA device is sufficient to execute the kernel.
bool sufficient() const {
if (__CUDACC_VER_MAJOR__ < 12 || (__CUDACC_VER_MAJOR__ == 12 && __CUDACC_VER_MINOR__ < 4)) {
std::cerr << "This example requires CUDA 12.4 or greater." << std::endl;
return false;
}
size_t smem_size = sizeof(typename Gemm::GemmKernel::SharedStorage);
cudaDeviceProp properties;
int device_idx;
cudaError_t result = cudaGetDevice(&device_idx);
if (result != cudaSuccess) {
std::cerr << "cudaGetDevice() failed with error: " << cudaGetErrorString(result) << std::endl;
return false;
}
result = cudaGetDeviceProperties(&properties, device_idx);
if (result != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() failed with error: " << cudaGetErrorString(result) << std::endl;
return false;
}
if (properties.major < 8 || (properties.major == 8 && properties.minor < 9)) {
std::cerr << "CUTLASS's Ada FP8 GEMM example requires a device of compute capability 89 or higher.\n" << std::endl;
return false;
}
if (properties.sharedMemPerBlockOptin < smem_size) {
std::cerr << "Insufficient shared memory. Need " << smem_size
<< ", but device only has " << properties.sharedMemPerBlockOptin << std::endl;
return false;
}
return true;
}
/// Executes one test
bool run(Options& options)
{
// Waive test if insufficient CUDA device
if (!sufficient()) {
std::cerr << "Insufficient resources to run the kernel." << std::endl;
return false;
}
this->initialize(options);
//
// Initialize the GEMM operator
//
typename Gemm::EpilogueOutputOp::Params::ActivationParams activation_params{
ElementCompute(options.alpha),
ElementCompute(options.beta)
};
typename Gemm::EpilogueOutputOp::Params epilogue_params{
activation_params,
scale_A.device_data(),
scale_B.device_data(),
scale_C.device_data(),
scale_D.device_data(),
scale_Aux.device_data(),
abs_max_Aux.device_data(),
abs_max_D.device_data()
};
typename Gemm::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
options.problem_size,
/* batch_count = */ 1,
epilogue_params,
tensor_A.device_data(),
tensor_B.device_data(),
tensor_C.device_data(),
tensor_D.device_data(),
tensor_Aux.device_data(),
tensor_Vector.device_data(),
options.problem_size.m() * options.problem_size.k(),
options.problem_size.n() * options.problem_size.k(),
options.problem_size.m() * options.problem_size.n(),
options.problem_size.m() * options.problem_size.n(),
(int)options.problem_size.m(), // Batch stride vector
tensor_A.layout().stride(0),
tensor_B.layout().stride(0),
tensor_C.layout().stride(0),
tensor_D.layout().stride(0),
(int64_t)0 // Leading dimension of vector. This must be 0
};
Gemm gemm_op;
cutlass::Status status = gemm_op.can_implement(arguments);
if (status != cutlass::Status::kSuccess) {
std::cerr << "Gemm::can_implement() failed" << std::endl;
return false;
}
size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);
status = gemm_op.initialize(arguments, workspace.get());
if (status != cutlass::Status::kSuccess) {
std::cerr << "Gemm::initialize() failed" << std::endl;
return false;
}
//
// Run the GEMM
//
status = gemm_op();
if (status != cutlass::Status::kSuccess) {
std::cerr << "Gemm::run() failed" << std::endl;
return false;
}
cudaError_t cuda_error = cudaDeviceSynchronize();
if (cuda_error != cudaSuccess) {
std::cerr << "CUDA error: " << cudaGetErrorString(cuda_error) << std::endl;
return false;
}
//
// Verify
//
bool passed = true;
if (options.reference_check) {
passed &= this->verify(options);
} else {
std::cout << "Skipped reference check" << std::endl;
}
//
// Warm up
//
for (int i = 0; i < options.warmup_iterations; ++i) {
gemm_op();
}
//
// Profile
//
cudaEvent_t events[2];
cudaError_t error;
for (auto & event : events) {
error = cudaEventCreate(&event);
if (error != cudaSuccess) {
std::cerr << "cudaEventCreate() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
}
// Record an event at the start of a series of GEMM operations
error = cudaEventRecord(events[0]);
if (error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
// Run profiling loop
for (int iter = 0; iter < options.iterations; ++iter) {
gemm_op();
}
// Record an event when the GEMM operations have been launched.
error = cudaEventRecord(events[1]);
if (error != cudaSuccess) {
std::cerr << "cudaEventRecord() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
// Wait for work on the device to complete.
error = cudaEventSynchronize(events[1]);
if (error != cudaSuccess) {
std::cerr << "cudaEventSynchronize() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
// Measure elapsed runtime
float runtime_ms = 0;
error = cudaEventElapsedTime(&runtime_ms, events[0], events[1]);
if (error != cudaSuccess) {
std::cerr << "cudaEventElapsed() failed: " << cudaGetErrorString(error) << std::endl;
return false;
}
// Compute average runtime and GFLOPs.
runtime_ms = runtime_ms / float(options.iterations);
float gflops = options.gflops(runtime_ms / 1000.0f);
std::cout << "Problem size: " << options.problem_size.m() << 'x' << options.problem_size.n() << 'x' << options.problem_size.k() << std::endl;
std::cout << "Runtime (ms): " << runtime_ms << std::endl;
std::cout << "GFLOPs/sec: " << gflops << std::endl;
// Cleanup
for (auto event : events) {
(void)cudaEventDestroy(event);
}
return passed;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
int main(int argc, char const** argv) {
cudaDeviceProp props;
cudaError_t error = cudaGetDeviceProperties(&props, 0);
if (error != cudaSuccess) {
std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl;
return -1;
}
if (__CUDACC_VER_MAJOR__ < 12 || (__CUDACC_VER_MAJOR__ == 12 && __CUDACC_VER_MINOR__ < 4) ||
(props.major != 8 && props.minor != 9)) {
//
// This example requires an NVIDIA Ada-architecture GPU.
//
std::cout
<< "CUTLASS's FP8 SM89 example requires a GPU of NVIDIA's Ada architecture "
<< "and CUDA toolkit version 12.4 or later.\n";
return 0;
}
//
// Parse options
//
Options options;
options.parse(argc, argv);
if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}
if (options.error) {
std::cerr << "Aborting execution." << std::endl;
return -1;
}
std::cout << "Running GEMM with staged accumulation (OpMultiplyAdd)" << std::endl;
std::cout << "=====================================================" << std::endl;
TestbedRunner<Gemm_<cutlass::arch::OpMultiplyAdd>> testbed_staged_accum;
bool passed = testbed_staged_accum.run(options);
if (passed) {
std::cout << "Passed" << std::endl;
} else {
std::cout << "Failed" << std::endl;
}
std::cout << "\nRunning GEMM with fast accumulation (OpMultiplyAddFastAccum)" << std::endl;
std::cout << "============================================================" << std::endl;
TestbedRunner<Gemm_<cutlass::arch::OpMultiplyAddFastAccum>> testbed_fast_accum;
passed = testbed_fast_accum.run(options);
if (passed) {
std::cout << "Passed" << std::endl;
} else {
std::cout << "Failed" << std::endl;
}
return 0;
}