cutlass/include/cutlass/arch/mma_sm60.h
Andrew Kerr c53f3339bb
CUTLASS 2.3 initial commit (#134)
CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
2020-09-23 14:00:58 -07:00

244 lines
6.7 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Matrix multiply
*/
#pragma once
#include <cuda_fp16.h>
#include "cutlass/arch/mma.h"
#include "cutlass/layout/matrix.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace arch {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Matrix multiply-add operation
template <typename LayoutA, typename LayoutB, typename LayoutC>
struct Mma<
gemm::GemmShape<2,1,1>,
1,
half_t,
LayoutA,
half_t,
LayoutB,
half_t,
LayoutC,
OpMultiplyAdd> {
using Shape = gemm::GemmShape<2, 1, 1>;
using Operator = OpMultiplyAdd;
CUTLASS_HOST_DEVICE
void operator()(
Array<half_t, 2> &d,
Array<half_t, 2> const &a,
Array<half_t, 1> const &b,
Array<half_t, 2> const &c
) {
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 600))
__half2 const & A = reinterpret_cast<__half2 const &>(a);
__half2 B = __half2half2(reinterpret_cast<__half const &>(b));
__half2 const & C = reinterpret_cast<__half2 const &>(c);
__half2 D = __hfma2(A, B, C);
d = reinterpret_cast<Array<half_t, 2> &>(D);
#else
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < 2; ++i) {
d[i] = a[i] * b[0] + c[i];
}
#endif
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Matrix multiply-add operation
template <typename LayoutA, typename LayoutB>
struct Mma<
gemm::GemmShape<1,2,1>,
1,
half_t,
LayoutA,
half_t,
LayoutB,
half_t,
layout::RowMajor,
OpMultiplyAdd> {
using Shape = gemm::GemmShape<1, 2, 1>;
using Operator = OpMultiplyAdd;
CUTLASS_HOST_DEVICE
void operator()(
Array<half_t, 2> &d,
Array<half_t, 1> const &a,
Array<half_t, 2> const &b,
Array<half_t, 2> const &c
) {
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 600))
__half2 const & A = __half2half2(reinterpret_cast<__half const &>(a));
__half2 B = reinterpret_cast<__half2 const &>(b);
__half2 const & C = reinterpret_cast<__half2 const &>(c);
__half2 D = __hfma2(A, B, C);
d = reinterpret_cast<Array<half_t, 2> &>(D);
#else
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < 2; ++i) {
d[i] = a[0] * b[i] + c[i];
}
#endif
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Matrix multiply-add operation
template <>
struct Mma <
gemm::GemmShape<2, 2, 1>,
1,
half_t,
layout::ColumnMajor,
half_t,
layout::RowMajor,
half_t,
layout::ColumnMajor,
OpMultiplyAdd> {
using Shape = gemm::GemmShape<2, 2, 1>;
using Operator = OpMultiplyAdd;
CUTLASS_HOST_DEVICE
void operator()(
Array<half_t, 4> &d,
Array<half_t, 2> const &a,
Array<half_t, 2> const &b,
Array<half_t, 4> const &c
) {
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 600))
__half2 const & A = reinterpret_cast<__half2 const &>(a);
__half2 Blo = __low2half2(reinterpret_cast<__half2 const &>(b));
__half2 Bhi = __high2half2(reinterpret_cast<__half2 const &>(b));
__half2 const *C = reinterpret_cast<__half2 const *>(&c);
__half2 Dlo = __hfma2(A, Blo, C[0]);
__half2 Dhi = __hfma2(A, Bhi, C[1]);
Array<half_t, 2> * D = reinterpret_cast<Array<half_t, 2> *>(&d);
D[0] = reinterpret_cast<Array<half_t, 2> const &>(Dlo);
D[1] = reinterpret_cast<Array<half_t, 2> const &>(Dhi);
#else
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < 2; ++j) {
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < 2; ++i) {
d[i + 2 * j] = a[i] * b[j] + c[i + 2 * j];
}
}
#endif
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Matrix multiply-add operation
template <>
struct Mma<
gemm::GemmShape<2, 2, 1>,
1,
half_t,
layout::ColumnMajor,
half_t,
layout::RowMajor,
half_t,
layout::RowMajor,
OpMultiplyAdd> {
using Shape = gemm::GemmShape<2, 2, 1>;
using Operator = OpMultiplyAdd;
CUTLASS_HOST_DEVICE
void operator()(
Array<half_t, 4> &d,
Array<half_t, 2> const &a,
Array<half_t, 2> const &b,
Array<half_t, 4> const &c
) {
#if (defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 600))
__half2 Alo = __low2half2(reinterpret_cast<__half2 const &>(a));
__half2 Ahi = __high2half2(reinterpret_cast<__half2 const &>(a));
__half2 const & B = reinterpret_cast<__half2 const &>(b);
__half2 const *C = reinterpret_cast<__half2 const *>(&c);
__half2 Dlo = __hfma2(Alo, B, C[0]);
__half2 Dhi = __hfma2(Ahi, B, C[0]);
Array<half_t, 2> * D = reinterpret_cast<Array<half_t, 2> *>(&d);
D[0] = reinterpret_cast<Array<half_t, 2> &>(Dlo);
D[1] = reinterpret_cast<Array<half_t, 2> &>(Dhi);
#else
CUTLASS_PRAGMA_UNROLL
for (int i = 0; i < 2; ++i) {
CUTLASS_PRAGMA_UNROLL
for (int j = 0; j < 2; ++j) {
d[i * 2 + j] = a[i] * b[j] + c[i * 2 + j];
}
}
#endif
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////
}
}