cutlass/tools/profiler/src/device_allocation.h
Andrew Kerr c53f3339bb
CUTLASS 2.3 initial commit (#134)
CUTLASS 2.3 adds GEMMs targeting Sparse Tensor Cores on the NVIDIA Ampere Architecture, fast SGEMM, and small matrix classes, bug fixes, and performance enhancements.
2020-09-23 14:00:58 -07:00

218 lines
6.9 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are permitted
* provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TOR (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/* \file
\brief Execution environment
*/
#pragma once
#include <stdexcept>
#include <list>
#include <vector>
#include "cutlass/library/library.h"
#include "cutlass/util/distribution.h"
#include "enumerated_types.h"
/////////////////////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace profiler {
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Device memory allocation
class DeviceAllocation {
private:
/// Data type of contained elements
library::NumericTypeID type_;
/// Gets the stride between elements
size_t batch_stride_;
/// Capacity in elements of device allocation
size_t capacity_;
/// Pointer to device memory
void *pointer_;
/// Layout type ID
library::LayoutTypeID layout_;
/// Stride vector
std::vector<int> stride_;
/// Extent vector
std::vector<int> extent_;
/// Support allocating a 'batch' of non-overlapping tensors in contiguous memory
int batch_count_;
/// Buffer holding TensorRef instance to recently allocated memory
std::vector<uint8_t> tensor_ref_buffer_;
public:
//
// Static member functions
//
/// Determines the number of bytes needed to represent this numeric type
static size_t bytes(library::NumericTypeID type, size_t capacity);
/// Returns the stride of a packed layout
static std::vector<int> get_packed_layout(
library::LayoutTypeID layout_id,
std::vector<int> const &extent);
/// returns the capacity needed
static size_t construct_layout(
void *bytes,
library::LayoutTypeID layout_id,
std::vector<int> const &extent,
std::vector<int> &stride);
/// Returns true if two blocks have exactly the same value
static bool block_compare_equal(
library::NumericTypeID numeric_type,
void const *ptr_A,
void const *ptr_B,
size_t capacity);
/// Returns true if two blocks have approximately the same value
static bool block_compare_relatively_equal(
library::NumericTypeID numeric_type,
void const *ptr_A,
void const *ptr_B,
size_t capacity,
double epsilon,
double nonzero_floor);
public:
//
// Methods
//
DeviceAllocation();
DeviceAllocation(library::NumericTypeID type, size_t capacity);
DeviceAllocation(
library::NumericTypeID type,
library::LayoutTypeID layout_id,
std::vector<int> const &extent,
std::vector<int> const &stride = std::vector<int>(),
int batch_count = 1);
~DeviceAllocation();
DeviceAllocation &reset();
/// Allocates device memory of a given type and capacity
DeviceAllocation &reset(library::NumericTypeID type, size_t capacity);
/// Allocates memory for a given layout and tensor
DeviceAllocation &reset(
library::NumericTypeID type,
library::LayoutTypeID layout_id,
std::vector<int> const &extent,
std::vector<int> const &stride = std::vector<int>(),
int batch_count = 1);
/// Returns a buffer owning the tensor reference
std::vector<uint8_t> &tensor_ref() {
return tensor_ref_buffer_;
}
bool good() const;
/// Data type of contained elements
library::NumericTypeID type() const;
/// Pointer to start of device memory allocation
void *data() const;
/// Pointer to the first element of a batch
void *batch_data(int batch_idx) const;
/// Gets the layout type
library::LayoutTypeID layout() const;
/// Gets the stride vector
std::vector<int> const & stride() const;
/// Gets the extent vector
std::vector<int> const & extent() const;
/// Gets the number of adjacent tensors in memory
int batch_count() const;
/// Gets the stride (in units of elements) beteween items
int64_t batch_stride() const;
/// Gets the stride (in units of bytes) beteween items
int64_t batch_stride_bytes() const;
/// Capacity of allocation in number of elements
size_t capacity() const;
/// Capacity of allocation in bytes
size_t bytes() const;
/// Initializes a device allocation to a random distribution using cuRAND
void initialize_random_device(int seed, Distribution dist);
/// Initializes a host allocation to a random distribution using std::cout
void initialize_random_host(int seed, Distribution dist);
/// Initializes a device allocation to a random distribution using cuRAND
void initialize_random_sparsemeta_device(int seed, int MetaSizeInBits);
/// Initializes a host allocation to a random distribution using std::cout
void initialize_random_sparsemeta_host(int seed, int MetaSizeInBits);
/// Copies from an equivalent-sized tensor in device memory
void copy_from_device(void const *ptr);
/// Copies from an equivalent-sized tensor in device memory
void copy_from_host(void const *ptr);
/// Copies from an equivalent-sized tensor in device memory
void copy_to_host(void *ptr);
/// Writes a tensor to csv
void write_tensor_csv(std::ostream &out);
};
using DeviceAllocationList = std::list<DeviceAllocation>;
/////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace profiler
} // namespace cutlass
/////////////////////////////////////////////////////////////////////////////////////////////////