cutlass/test/unit/conv/device/conv3d_problems.h
ANIKET SHIVAM 66d9cddc83
New updates for 2.11 (#775)
* New updates.

* Minor profiler updates

Co-authored-by: Aniket Shivam <ashivam@nvidia.com>
2023-01-20 16:32:57 -05:00

272 lines
12 KiB
C++

/***************************************************************************************************
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Implicit GEMM testbed sizes for Conv2d problem
*/
#pragma once
#include "../../common/cutlass_unit_test.h"
#include "cutlass/cutlass.h"
#include "cutlass/aligned_buffer.h"
#include "cutlass/numeric_types.h"
#include "cutlass/layout/matrix.h"
#include "cutlass/layout/tensor.h"
#include "cutlass/layout/pitch_linear.h"
#include "cutlass/core_io.h"
#include "cutlass/util/host_tensor.h"
#include "cutlass/util/tensor_view_io.h"
#include "cutlass/conv/convolution.h"
#include "cutlass/conv/conv2d_problem_size.h"
#include "cutlass/conv/conv3d_problem_size.h"
namespace test {
namespace conv {
namespace device {
using Conv3dProblemVector = std::vector<cutlass::conv::Conv3dProblemSize>;
////////////////////////////////////////////////////////////////////////////
/// Structure TestbedConv3dProblemSizes initializes and holds conv default and
/// important network sizes
////////////////////////////////////////////////////////////////////////////
struct TestbedConv3dProblemSizes {
//
// Data members
//
int minimum_channel_size;
Conv3dProblemVector conv3d_default_sizes;
Conv3dProblemVector conv3d_vnet_medical_sizes;
//
// Methods
//
/// Default ctor
TestbedConv3dProblemSizes(int minimum_channel_size_ = 64): minimum_channel_size (minimum_channel_size_) {
initialize_conv3d_default_sizes();
initialize_conv3d_vnet_medical_sizes(conv3d_vnet_medical_sizes, 1 /*batch-size*/);
filter_all();
}
/// Eliminates some illegal cases
void filter_all() {
Conv3dProblemVector *problems_vectors[] = {
&conv3d_default_sizes,
&conv3d_vnet_medical_sizes
};
for (Conv3dProblemVector *problems : problems_vectors) {
Conv3dProblemVector filtered;
for (cutlass::conv::Conv3dProblemSize const & problem : *problems) {
if (!(problem.C % minimum_channel_size)) {
filtered.push_back(problem);
}
}
*problems = filtered;
}
}
// Add a few standard convolution problem sizes
void initialize_conv3d_default_sizes() {
conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize(
{1, 1, 3, 3, minimum_channel_size}, // input size (NDHWC)
{8, 1, 1, 1, minimum_channel_size}, // filter size (KTRSC)
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize(
{1, 1, 1, 8, minimum_channel_size}, // input size (NDHWC)
{8, 1, 1, 3, minimum_channel_size}, // filter size (KTRSC)
cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize(
{1, 8, 8, 8, minimum_channel_size}, // input size (NDHWC)
{8, 3, 3, 3, minimum_channel_size}, // filter size (KTRSC)
cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize(
{1, 16, 16, 16, minimum_channel_size}, // input size (NDHWC)
{8, 3, 3, 3, minimum_channel_size}, // filter size (KTRSC)
cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize(
{1, 1, 15, 19, 160}, // input size (NDHWC)
{224, 1, 3, 6, 160}, // filter size (KTRSC)
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize(
{1, 2, 1, 1, minimum_channel_size}, // input size (NDHWC)
{8, 2, 1, 1, minimum_channel_size}, // filter size (KTRSC)
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize(
{1, 1, 7, 7, minimum_channel_size}, // input size (NDHWC)
{16, 1, 3, 3, minimum_channel_size}, // filter size (KTRSC)
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_default_sizes.push_back(cutlass::conv::Conv3dProblemSize(
{1, 11, 15, 19, 64}, // input size (NDHWC)
{32, 4, 3, 6, 64}, // filter size (KTRSC)
cutlass::Coord<3>({2, 1, 3}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
}
// Add vnet layers to unit testing sizes
void initialize_conv3d_vnet_medical_sizes(Conv3dProblemVector &conv3d_problem_vector, int batch_size = 1) {
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 32, 32, 32, 16}, // input size (NDHWC)
{32, 2, 2, 2, 16}, // filter size (KTRSC)
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 16, 16, 16, 32}, // input size (NDHWC)
{32, 3, 3, 3, 32}, // filter size (KTRSC)
cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 16, 16, 16, 32}, // input size (NDHWC)
{64, 2, 2, 2, 32}, // filter size (KTRSC)
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 8, 8, 8, 64}, // input size (NDHWC)
{64, 3, 3, 3, 64}, // filter size (KTRSC)
cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 8, 8, 8, 64}, // input size (NDHWC)
{128, 2, 2, 2, 64}, // filter size (KTRSC)
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 4, 4, 4, 128}, // input size (NDHWC)
{128, 3, 3, 3, 128}, // filter size (KTRSC)
cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 8, 8, 8, 128}, // input size (NDHWC)
{128, 3, 3, 3, 128}, // filter size (KTRSC)
cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 16, 16, 16, 64}, // input size (NDHWC)
{64, 3, 3, 3, 64}, // filter size (KTRSC)
cutlass::Coord<3>({1, 1, 1}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({1, 1, 1}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 32, 32, 32, 16}, // input size (NDHWC)
{64, 2, 2, 2, 16}, // filter size (KTRSC)
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
conv3d_problem_vector.push_back(cutlass::conv::Conv3dProblemSize(
{batch_size, 16, 16, 16, 32}, // input size (NDHWC)
{128, 2, 2, 2, 32}, // filter size (KTRSC)
cutlass::Coord<3>({0, 0, 0}), // padding (pad_d, pad_h, pad_w)
cutlass::Coord<3>({2, 2, 2}), // stride (stride_d, stride_h, stride_w)
cutlass::Coord<3>({1, 1, 1}) // dilation (dilation_d, dilation_h, dilation_w)
));
}
};
} // namespace device
} // namespace conv
} // namespace test