cutlass/tools/library/scripts/pycutlass/README.md
Jack Kosaian df81d847d7
Make Python interface work for non-SM80 targets (#726)
* Make Python interface work for non-SM80 targets

* Remove line in README
2022-12-07 21:53:33 -05:00

133 lines
5.8 KiB
Markdown

# PyCUTLASS: CUTLASS Python Interface
PyCUTLASS is a python interface of CUTLASS C++ template library. PyCUTLASS takes user-defined operation descriptions, emits C++ code, and compiles it with `nvcc` or `nvrtc`. It also provides wrappers for user-provide arguments from [numpy](https://numpy.org/), [torch](https://pytorch.org/), and [cupy](https://github.com/cupy/cupy) and encode them to kernel's parameters.
```python
import pycutlass
from pycutlass import *
import torch
pycutlass.get_memory_pool(2**8, 2**32)
math_inst = MathInstruction(
[1, 1, 1], cutlass.float32, cutlass.float32, cutlass.float32,
cutlass.OpClass.Simt, MathOperation.multiply_add
)
tile_description = TileDescription(
[128, 128, 8], 4, [2, 4, 1],
math_inst
)
A = TensorDescription(
cutlass.float32, cutlass.RowMajor, 1
)
B = TensorDescription(
cutlass.float32, cutlass.RowMajor, 1
)
C = TensorDescription(
cutlass.float32, cutlass.RowMajor, 1
)
epilogue_functor = LinearCombination(cutlass.float32, 1, cutlass.float32, cutlass.float32)
operation = GemmOperationUniversal(
arch=80, tile_description=tile_description,
A=A, B=B, C=C,
epilogue_functor=epilogue_functor,
swizzling_functor=cutlass.IdentitySwizzle1
)
pycutlass.compiler.add_module([operation,])
problem_size = cutlass.gemm.GemmCoord(512, 256, 128)
tensor_A = torch.ceil(torch.empty(size=(problem_size.m(), problem_size.k()), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5))
tensor_B = torch.ceil(torch.empty(size=(problem_size.k(), problem_size.n()), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5))
tensor_C = torch.ceil(torch.empty(size=(problem_size.m(), problem_size.n()), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5))
tensor_D = torch.empty_like(tensor_C)
alpha = 1.0
beta = 0.0
arguments = GemmArguments(
operation=operation, problem_size=problem_size,
A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D,
output_op=operation.epilogue_type(alpha, beta),
gemm_mode=cutlass.gemm.Mode.Gemm, split_k_splices=1
)
operation.run(arguments)
arguments.sync()
tensor_D_ref = alpha * tensor_A @ tensor_B + beta * tensor_C
assert torch.equal(tensor_D, tensor_D_ref)
```
PyCUTLASS also provides infrastructures for profiling, compiled artifact management, and pool memory manager
## Supported Features
PyCUTLASS currently supports following operations:
* GEMM with mode {Serial, Parallel Split K, Batched GEMM, Array GEMM}, op class {SIMT, TensorCore}, data type {int8, f16, bf16, f32, f64}, layout {RowMajor, ColumnMajor, Row/ColumnMajorInterleaved<32> for int8}, math operation {MultiplyAdd, MultiplyAddFastF16, MultiplyAddFastBF16, MultiplyAddFastF32}, swizzling functions {IdentitySwizzle<1,2,4,8>, HorizontalSwizzle, BatchedIdentitySwizzle}, and epilogue {LinearCombination, LinearCombinationClamp}
* GEMM grouped with op class {SIMT, TensorCore}, data type {int8, f16, bf16, f32, f64}, layout {RowMajor, ColumnMajor}, math operation {MultiplyAdd, MultiplyAddFastF16, MultiplyAddFastBF16, MultiplyAddFastF32}, scheduling mode {Host, Device}, and epilogue {LinearCombination, LinearCombinationClamp}.
* Conv2d with {Fprop, Dgrad, Wgrad}, op class {SIMT, TensorCore}, data type {int8, f16, bf16, f32, f64}, layout {Tensor NHWC, TensorNC32HW32 and TensorC32RSK for int8}, math operation {MultiplyAdd, MultiplyAddFastF16, MultiplyAddFastBF16, MultiplyAddFastF32}, split-k mode {Parallel, Serial}, and epilogue {LinearCombination, LinearCombinationClamp}
The tiling size of above operations can also be customized.
## Installation
### Using Docker
You can run the PyCUTLASS on NGC PyTorch container.
```shell
docker run --gpus all -it --rm nvcr.io/nvidia/pytorch:22.09-py3
```
### Environment variables
PyCUTLASSS requires two environment variables:
* `CUTLASS_PATH`: the root directory of CUTLASS. You can set this from the location at which you cloned CUTLASS via: `export CUTLASS_PATH=$(pwd)`.
* `CUDA_INSTALL_PATH`: the directory where cuda toolkit is installed. If running in bash with `nvcc` installed under a CUDA toolkit, you can set this to the location of your `nvcc` installation via: `export CUDA_INSTALL_PATH=$(which nvcc | awk -F'/bin/nvcc' '{print $1}')`
After setting these two environment variables, PyCUTLASS can be installed with
```shell
cd $CUTLASS_PATH/tools/library/scripts/pycutlass && bash build.sh
```
## Examples
Examples can be found in [$CUTLASS_PATH/examples/40_cutlass_py](examples/40_cutlass_py)
## Test
The test cases are listed in `$CUTLASS_PATH//tools/library/scripts/pycutlass/test`. The unit test can be run with
```shell
# Each of these tests are only supported on devices with compute capability of SM80. For other devices,
# see the basic examples in $CUTLASS_PATH/examples/40_cutlass_py
cd $CUTLASS_PATH/tools/library/scripts/pycutlass/test/unit && python test_sm80.py
cd $CUTLASS_PATH/tools/library/scripts/pycutlass/test/example && bash run_all_example.sh
```
## build documentation
Run
```shell
bash build_doc.sh
```
## Troubleshooting
### Issue 1: permission denied
Building PyCUTLASS requires installing dependencies to python. So conda could an option if you don't have permission.
### Issue 2: rmm: module not found
PyCUTLASS manages the device memory with [RMM](https://github.com/rapidsai/rmm). Our `build.sh` automatically pull the [rmm branch-22.08](https://github.com/rapidsai/rmm/tree/branch-22.08) from github and build it from source. The rmm is allocated at `$CUTLASS_PATH/tools/library/scripts/pycutlass/rmm`. It requires `cmake > 3.20.1`. If the build fails, it can be manually fixed with the following steps:
```shell
cd $CUTLASS_PATH/tools/library/scripts/pycutlass/rmm && ./build.sh librmm rmm
cd $CUTLASS_PATH/tools/library/scripts/pycutlass/rmm/python
python setup.py build_ext --inplace
python setup.py install
```
To test whether rmm is successfully installed, try `import rmm`. For other issues related to rmm, please check https://github.com/rapidsai/rmm/issues.